Analysis on Manifolds 9. The Implicit Function Theorem

本节是另一个重要的定理:隐函数定理,隐函数表示的函数在某一点(a,b)可微的充要条件是隐函数关于因变量的导数在(a,b)点是非奇异的,并且可以显式计算出隐函数的导数。

Exercises

Exercise 1. Let f:\mathbf{R}^3\to\mathbf{R}^2 be of class C^1; write f in the form f(x,y_1,y_2). Assume that f(3,-1,2)=0 and

\displaystyle{Df(3,-1,2)=\begin{bmatrix}1&2&1\\1&-1&1\end{bmatrix}.}

( a ) Show there is a function g:B\to\mathbf{R}^2 of class C^1 defined on an open set B in \mathbf{R} such that f(x,g_1(x),g_2(x))=0 for x\in B, and g(3)=(-1,2).
( b ) Find Dg(3).
( c ) Discuss the problem of solving the equation f(x,y_1,y_2)=0 for an arbitrary pair of the unknowns in terms of the third, near the point (3,-1,2).

Solution:
( a ) Since

\displaystyle{\det\frac{\partial f(x,y_1,y_2)}{\partial(y_1,y_2)}(3,-1,2)=\det\begin{bmatrix}2&1\\-1&1\end{bmatrix}=5\neq 0}

by the implicit function theorem, the conclusion holds.
( b ) We have

\displaystyle{\begin{aligned}Dg(3)&=-\left[\frac{\partial f(x,y_1,y_2)}{\partial(y_1,y_2)}(3,-1,2)\right]^{-1}\cdot\frac{\partial f(x,y_1,y_2)}{\partial(x)}(3,-1,2)\\&=-\begin{bmatrix}2&1\\-1&1\end{bmatrix}^{-1}\cdot\begin{bmatrix}1\\1\end{bmatrix}\\&=\frac{1}{3}\begin{bmatrix}-1&1\\-1&2\end{bmatrix}\cdot\begin{bmatrix}1\\1\end{bmatrix}=\frac{1}{3}\begin{bmatrix}0\\1\end{bmatrix}\end{aligned}}

( c ) By some easy calculation we can know that

\displaystyle{\det\frac{\partial f(x,y_1,y_2)}{\partial(y_1,y_2)}(3,-1,2)\neq 0,\quad\det\frac{\partial f(x,y_1,y_2)}{\partial(x,y_1)}(3,-1,2)\neq0}

thus the equation f(x,y_1,y_2)=0 can be solved for (y_1,y_2) in terms of x, and for (x,y_1) in terms of y_2, however, as

\displaystyle{\det\frac{\partial f(x,y_1,y_2)}{\partial(x,y_2)}(3,-1,2)=\det\begin{bmatrix}1&1\\1&1\end{bmatrix}=0}

the equation f(x,y_1,y_2)=0 cannot be solved for (x,y_2) in terms of y_1.

Exercise 2. Given f:\mathbf{R}^5\to\mathbf{R}^2, of class C^1. Let \mathbf{a}=(1,2,-1,3,0); suppose that f(\mathbf{a})=\mathbf{0} and

\displaystyle{Df(\mathbf{a})=\begin{bmatrix}1&3&1&-1&2\\0&0&1&2&-4\end{bmatrix}.}

( a ) Show there is a function g:B\to\mathbf{R}^2 of class C^1 defined on an open set B of \mathbf{R}^3 such that

\displaystyle{f(x_1,g_1(x),g_2(x),x_2,x_3)=0}

for x=(x_1,x_2,x_3)\in B, and g(1,3,0)=(2,-1).
( b ) Find Dg(1,3,0).
( c ) Discuss the problem of solving the equation f(\mathbf{x})=\mathbf{0} for an arbitrary pair of the unknowns in terms of the others, near the point \mathbf{a}.
Solution:
( a ) Since

\displaystyle{\det\frac{\partial f}{\partial(g_1,g_2)}(\mathbf{a})=\det\begin{bmatrix}3&1\\0&1\end{bmatrix}=3\neq 0}

by the implicit function theorem, the conclusion holds.
( b ) We have

\displaystyle{\begin{aligned}Dg(1,3,0)&=-\left[\frac{\partial f}{\partial(g_1,g_2)}(\mathbf{a})\right]^{-1}\cdot\frac{\partial f}{\partial(x_1,x_2,x_3)}(\mathbf{a})\\&=-\begin{bmatrix}3&1\\0&1\end{bmatrix}^{-1}\cdot\begin{bmatrix}1&-1&2\\0&2&-4\end{bmatrix}\\&=\frac{1}{3}\begin{bmatrix}-1&1\\0&-3\end{bmatrix}\cdot\begin{bmatrix}1&-1&2\\0&2&-4\end{bmatrix}\\&=\begin{bmatrix}-1/3&1&-2\\0&-2&4\end{bmatrix}\end{aligned}}

( c ) The pairs that cannot solve the equation f(\mathbf{x})=\mathbf{0} in terms of the others, denoting \mathbf{x}=(x_1,x_2,x_3,x_4,x_5), are: (x_1,x_2) and (x_4,x_5).

Exercise 3. Let f:\mathbf{R}^2\to\mathbf{R} be of class C^1, with f(2,-1)=-1. Set

\displaystyle{\begin{aligned}G(x,y,u)&=f(x,y)+u^2,\\H(x,y,u)&=ux+3y^3+u^3.\end{aligned}}

The equations G(x,y,u)=0 and H(x,y,u)=0 have the solution (x,y,u)=(2,-1,1).
( a ) What conditions on Df ensure that there are C^1 function x=g(y) and u=h(y) defined on an open set in \mathbf{R} that satisfy both equations, such that g(-1)=2 and h(-1)=1?
( b ) Under the conditions of (a), and assuming that Df(2,-1)=[1,-3], find g'(-1) and h'(-1).
Solution:
( a ) We have DG=\begin{bmatrix}\partial{f}/\partial{x}&\partial{f}/\partial{y}&2u\end{bmatrix} and DH=\begin{bmatrix}2u&9y^2&x+3u^2\end{bmatrix}, thus

\displaystyle{\frac{\partial{G}}{\partial{y}}(2,-1,1)=\frac{\partial f}{\partial y}(2,-1),\quad \frac{\partial{H}}{\partial{y}}(2,-1,1)=9}

thus we need \partial{f}/\partial{y}(2,-1)\neq 0.
( b ) From G(2,-1,1)=0 we have

\displaystyle{\frac{\partial{f}}{\partial{x}}(2,-1)g'(-1)+\frac{\partial{f}}{\partial{y}}(2,-1)+2h(-1)h'(-1)=0}

which gives g'(-1)+2h'(-1)=3. Similarly, from H(2,-1,1)=0 we have

\displaystyle{h(-1)g'(-1)+h'(-1)g(-1)+9(-1)^2+3[h(-1)]^2h'(-1)=0}

which gives g'(-1)+5h'(-1)=-9. Together we solve to get g'(-1)=15,h'(-1)=-6.

Exercise 4. Let F:\mathbf{R}^2\to\mathbf{R} be of class C^2, with F(0,0)=0 and DF(0,0)=[2,3], Let G:\mathbf{R}^3\to\mathbf{R} be defined by the equation

\displaystyle{G(x,y,z)=F(x+2y+3z-1,x^3+y^2-z^2)}

( a ) Note that G(-2,3,-1)=F(0,0)=0. Show that one can solve the equation G(x,y,z)=0 for z, say z=g(x,y), for (x,y) in a neighborhood B of (-2,3), such that g(-2,3)=-1.
( b ) Find Dg(-2,3).
( c ) If D_1D_1F=3 and D_1D_2F=-1 and D_2D_2F=5 at (0,0), find D_2D_1g(-2,3).
Solution:
( a ) Let H(x,y,z)=(x+2y+3z-1,x^3+y^2-z^2), then G(x,y,z)=(F\circ H)(x,y,z), and by the chain rule

\displaystyle{DG(-2,3,-1)=DF(0,0)\cdot DH(-2,3,-1)=[2,3]\cdot\begin{bmatrix}1&2&3\\12&6&2\end{bmatrix}=\begin{bmatrix}38&22&12\end{bmatrix}}

We can see that \partial G/\partial z(-2,3,1)=12, which satisfies the condition of the implicit function theorem.
( b ) Dg(-2,3)=-\dfrac{1}{12}[38,22].
( c ) We have DF=[D_1F,D_2F] and

\displaystyle{DH=\begin{bmatrix}1&2&3\\3x^2&2y&-2z\end{bmatrix}}

this gives

\displaystyle{DG(x,y,z)=DF\cdot DH=\begin{bmatrix}D_1F+3x^2D_2F&2D_1F+2yD_2F&3D_1F-2zD_2F\end{bmatrix}}

from this and the expression of Dg(x,y) we have, suppose the condition of implicit funtion theorem is satisfied, that for z=g(x,y):

\displaystyle{Dg(x,y)=-\frac{1}{3D_1F-2zD_2F}\begin{bmatrix}D_1F+3x^2D_2F&2D_1F+2yD_2F\end{bmatrix}}
\displaystyle{D_1g(x,y)=-\frac{D_1F+3x^2D_2F}{3D_1F-2zD_2F}}

thus to calculate D_2D_1g(-2,3), we notice D_1F(0,0)=2,D_2F(0,0)=3, and as F is of class C^2, we get D_1D_2F=D_2D_1F=-1 at (0,0). Let H=D_1F+3x^2D_2F, we have D_2H=D_2D_1F+3x^2D_2D_2F and

\displaystyle{H(-2,3,1)=2+36=38,D_2H(-2,3,1)=-1+60=59}

Let K=3D_1F-2zD_2F, we have D_2K=3D_2D_1F-2D_2gD_2F-2gD_2D_2F, thus

\displaystyle{K(-2,3,1)=6-2(-1)3=12,D_2K(-2,3,1)=3(-1)+11+2\times 5=18}

Now

\displaystyle{D_2D_1g(-2,3)=-\frac{(D_2H)K-H(D_2K)}{K^2}(-2,3,1)=-\frac{59\times 12-38\times 18}{144}=-\frac{24}{144}}

Exercise 5. Let f.g:\mathbf{R}^3\to\mathbf{R} be functions of class C^1. “In general”, one expects that each of the equations f(x,y,z)=0 and g(x,y,z)=0 represents a smooth surface in \mathbf{R}^3, and that their intersection is a smooth curve. Show that if (x_0,y_0,z_0) satisfies both equations, and if \partial (f,g)/\partial (x,y,z) has rank 2 at (x_0,y_0,z_0), then near (x_0,y_0,z_0), one can solve these equations for two of x,y,z in terms of the third, thus representing the solution set locally as a parametrized curve.
Solution: Since \partial (f,g)/\partial (x,y,z) has rank 2 at (x_0,y_0,z_0), we see that at least one of \det\partial (f,g)/\partial (x,z), \det\partial (f,g)/\partial (x,y) and \det\partial (f,g)/\partial (y,z) is nonzero, which means we can apply the implicit function theorem to get the result.

Exercise 6. Let f:\mathbf{R}^{k+n}\to\mathbf{R}^n be of class C^1; suppose that f(\mathbf{a})=\mathbf{0} and that Df(\mathbf{a}) has rank n. Show that if \mathbf{c} is a point of \mathbf{R}^n sufficiently close to \mathbf{0}, then the equation f(\mathbf{x})=\mathbf{c} has a solution.
Solution: Since Df(\mathbf{a}) has rank n, we can find n columns of Df(\mathbf{a}) to be linearly independent, we assume the first n columns are so, and discuss the general case at last.
Let F:\mathbf{R}^{k+2n}\to\mathbf{R}^{k+n} be defined as follows:

\displaystyle{F(\mathbf{x},\mathbf{y})=\big(f(\mathbf{a}+\mathbf{y})-\mathbf{x},\pi_{n+1}(\mathbf{y}),\dots,\pi_{n+k}(\mathbf{y})\big),\quad\mathbf{x}\in\mathbf{R}^{n},\mathbf{y}\in\mathbf{R}^{k+n}}

then F(\mathbf{0}_n,\mathbf{0}_{n+k})=\mathbf{0}_{n+k}, and

\displaystyle{\frac{\partial F}{\partial \mathbf{y}}(\mathbf{0}_n,\mathbf{0}_{n+k})=\begin{bmatrix}D_1f(\mathbf{a})&\cdots&D_{n+1}f(\mathbf{a})&\cdots&D_{n+k}f(\mathbf{a})\\&&1&&\\&&&\ddots&\\&&&&1\end{bmatrix}}

this is an (n+k)\times (n+k) matrix which is non-singular, as we assume D_1f(\mathbf{a}),\dots,D_nf(\mathbf{a}) are linearly independent. Thus by the implicit function theorem ,there is a neighborhood B of \mathbf{0}_n in \mathbf{R}^n and a unique continuous function g:B\to\mathbf{R}^{k+n} such that g(\mathbf{0}_n)=\mathbf{0}_{n+k} and

\displaystyle{F(\mathbf{x},g(\mathbf{x}))=\mathbf{0},\quad\forall\mathbf{x}\in B}

Now if \mathbf{c} is close enough to \mathbf{0} such that \mathbf{c}\in B, we can have F(\mathbf{c},g(\mathbf{c}))=\mathbf{0}, which means f(\mathbf{a}+g(\mathbf{c}))=\mathbf{c}.
Finally, in the general case, for any n columns of Df(\mathbf{a}) which are linearly independent, which means there are k columns remaining, we substitute \pi_{n+1}(\mathbf{y}),\dots,\pi_{n+k}(\mathbf{y}) with the corresponding k column coordinate functions, and the conclusion follows.

留下评论