Linear Algebra (2ed) Hoffman&Kunze 1.4

我已经忘了这个概念中文如何翻译,但是其本质就是在Row-reduced的基础上,作行的对调,使得所有非零行在上面且每一行开头的1以从左至右自上而下的方式排列、所有零行在下面。这也是Theorem 5的结论,即任何 m\times n矩阵都和一个row-reduced echelon matrix是行等价的。
前两节讨论了如此多的row-reduced问题,目的是为了解方程组,因为row-reduced的形式使得解方程非常方便,并且如果非零行数比未知数的个数少,那么一定有非退化解(non-trivial solution),即不是0向量的解。Theorem 6是一个更强的假设和更弱一些的结论:如果Am\times n矩阵且m<n,那么AX=0一定有non-trivial solution。Theorem 7是一个特殊一点的结论:n\times n方阵行等价于单位矩阵的充要条件是AX=0只有0解。
以上已经讨论了足够多的关于homogeneous system的结论。如果将条件放松,即 AX=0变为 AX=Y,那么需要考虑augmented matrix \begin{bmatrix}A&Y\end{bmatrix}, 在inhomogeneous system中,首先要考虑的是有没有解(不像homogeneous system里一定有0解),按照Theorem 4Theorem 5可以将 A变为一个row-reduced echelon matrix A',对应的会把 Y变成一个新的列向量 Z, 那么这个system有解的充要条件是 A'里全为零的最后几行对应的 Z的最后几个分量也都是0。
最后有一个看似很奇怪但确实正确的结论: AX=Y如果 A,Y都是在 F的一个subfield F_1上,那么其在 F中有解可以推出其在 F_1中有解。

Exercises

1.Find all solutions to the following systems of equations by row-reducing the coefficient matrix:

\begin{aligned}\frac{1}{3}&x_1+2x_2&-6x_3=0\\-4&x_1&+5x_3=0\\-3&x_1+6x_2&-13x_3=0\\-\frac{7}{3}&x_1+2x_2&-\frac{8}{3}x_3=0\end{aligned}

Solution: We have

\begin{bmatrix}1/3&2&-6\\-4&0&5\\-3&6&-13\\-7/3&2&-8/3\end{bmatrix}\rightarrow\begin{bmatrix}1&6&-18\\0&24&-67\\0&24&-67\\-7&6&-8\end{bmatrix}\rightarrow\begin{bmatrix}1&6&-18\\0&24&-67\\0&0&0\\0&48&-134\end{bmatrix}\rightarrow\begin{bmatrix}1&6&-18\\0&24&-67\\0&0&0\\0&0&0\end{bmatrix}

let x_3=c, then all solutions is of the form:

x_1=\dfrac{1062}{67} c,\quad x_2=\dfrac{24}{67} c,\quad x_3=c,\quad c\in R

2. Find a row-reduced echelon matrix which is row-equivalent to
A=\begin{bmatrix}1&-i\\2&2\\i&1+i\end{bmatrix}. What are the solutions of AX=0?

Solution: We have

A=\begin{bmatrix}1&-i\\2&2\\i&1+i\end{bmatrix}\rightarrow\begin{bmatrix}1&1\\0&-i-1\\i&1+i\end{bmatrix}\rightarrow\begin{bmatrix}1&1\\0&1\\0&-i\end{bmatrix}\rightarrow\begin{bmatrix}1&0\\0&1\\0&0\end{bmatrix}

the solutions of AX=0 are trivial solutions.

3.Describe explicitly all 2\times 2 row-reduced echelon matrices.

Solution: They are (due to the nonzero entries of the matrix)

\begin{bmatrix}0&0\\0&0\end{bmatrix},\quad\begin{bmatrix}1&0\\0&0\end{bmatrix},\quad\begin{bmatrix}1&b\\0&0\end{bmatrix},\quad\begin{bmatrix}1&0\\0&1\end{bmatrix}

4. Consider the system of equations

\begin{aligned}&x_1-x_2+&2x_3=1\\2&x_1&+2x_3=1\\&x_1-3x_2&+4x_3=2\end{aligned}

Does this system have a solution? If so, describe explicitly all solutions.

Solution: We have

\begin{bmatrix}1&-1&2&1\\2&0&2&1\\1&-3&4&2\end{bmatrix}\rightarrow\begin{bmatrix}1&-1&2&1\\0&2&-2&-1\\0&-2&2&1\end{bmatrix}\rightarrow\begin{bmatrix}1&-1&2&1\\0&1&-1&-\frac{1}{2}\\0&0&0&0\end{bmatrix}\rightarrow\begin{bmatrix}1&0&1&\frac{1}{2}\\0&1&-1&-\frac{1}{2}\\0&0&0&0\end{bmatrix}

this system has a solution, let x_3=c, then all solutions of the system is

\left(\dfrac{1}{2}-c,c-\dfrac{1}{2},c\right)

5. Give an example of a system of two linear equations in two unknowns which has no solution.

Solution: An example may be

\begin{cases}x_1+x_2&=1\\2x_1+2x_2&=3\end{cases}

6. Show that the system

\begin{array}{r}x_1-2x_2+x_3+2x_4=1\\x_1+x_2-x_3+x_4=2\\x_1+7x_2-5x_3-x_4=3\end{array}

has no solution.

Solution: Use row operation on the augmented matrix of the system we get

\begin{bmatrix}1&-2&1&2&1\\1&1&-1&1&2\\1&7&-5&-1&3\end{bmatrix}\rightarrow\begin{bmatrix}1&-2&1&2&1\\0&3&-2&-1&1\\0&9&-6&-3&2\end{bmatrix}\rightarrow\begin{bmatrix}1&-2&1&2&1\\0&3&-2&-1&1\\0&0&0&0&-1 \end{bmatrix}

thus the system has no solution.

7. Find all solutions of

\begin{aligned}2x_1-3x_2-7x_3+5x_4+2x_5&=-2\\x_1-2x_2-4x_3+3x_4+x_5&=-2\\2x_1-4x_3+2x_4+x_5&=3\\x_1-5x_2-7x_3+6x_4+2x_5&=-7\end{aligned}

Solution: We have

\begin{bmatrix}2&-3&-7&5&2&-2\\1&-2&-4&3&1&-2\\2&0&-4&2&1&3\\1&-5&-7&6&2&-7\end{bmatrix}\rightarrow\begin{bmatrix}1&-2&-4&3&1&-2\\0&1&1&-1&0&2\\0&4&4&-4&-1&7\\0&-3&-3&3&1&-5\end{bmatrix}\\ \rightarrow\begin{bmatrix}1&-2&-4&3&1&-2\\0&1&1&-1&0&2\\0&0&0&0&-1&-1\\0&0&0&0&1&1\end{bmatrix}\rightarrow\begin{bmatrix}1&0&-2&1&1&2\\0&1&1&-1&0&2\\0&0&0&0&1&1\\0&0&0&0&0&0\end{bmatrix}

thus x_5=1, if we let x_3=c_1,x_4=c_2, then all solutions of the system is

x_1=1+2c_1-c_2,x_2=2-c_1+c_2,x_3=c_1,x_4=c_2,x_5=1

8. Let A=\begin{bmatrix}3&-1&2\\2&1&1\\1&-3&0\end{bmatrix}. For which triples (y_1,y_2,y_3) does the system AX=Y have a solution?

Solution:

\begin{bmatrix}3&-1&2&y_1\\2&1&1&y_2\\1&-3&0&y_3 \end{bmatrix}\rightarrow\begin{bmatrix}1&-3&0&y_3\\0&7&1&y_2-2y_3\\0&8&2&y_1-3y_3 \end{bmatrix} \rightarrow \begin{bmatrix}1&-3&0&y_3\\0&7&1&y_2-2y_3\\0&8&2&y_1-3y_3 \end{bmatrix} \rightarrow \begin{bmatrix}1&-3&0&y_3\\0&7&1&y_2-2y_3\\0&1&1&y_1-y_2-y_3\end{bmatrix}

Since A is row equivalent to the identity matrix, AX=Y has a solution for all (y_1,y_2,y_3 ).

9. Let A=\begin{bmatrix}3&-6&2&-1\\-2&4&1&3\\0&0&1&1\\1&-2&1&0\end{bmatrix}. For which (y_1,y_2,y_3,y_4) does the system AX=Y have a solution?

Solution:

\begin{bmatrix}3&-6&2&-1&y_1\\-2&4&1&3&y_2\\0&0&1&1&y_3\\1&-2&1&0&y_4\end{bmatrix} \rightarrow \begin{bmatrix}1&-2&1&0&y_4\\0&0&1&1&y_3\\0&0&-1&3&y_2-2y_4\\0&0&-1&-1&y_1-3y_4 \end{bmatrix} \rightarrow \begin{bmatrix}1&-2&1&0&y_4\\0&0&1&1&y_3\\0&0&0&4&*\\0&0&0&0&y_1-3y_4+y_3\end{bmatrix}

so for triples (y_1,y_2,y_3,y_4 ) which satisfies y_1=3y_4-y_3 does the system have a solution.

10. Suppose R and R' are 2\times 3 row-reduced echelon matrices and that the systems RX=0 and R'X=0 have exactly the same solutions. Prove that R=R'.

Solution: If R and R' are zero matrix then there’s nothing to prove.
If both are nonzero and assume they have different number of rows, let

R=\begin{bmatrix}1&0&a\\0&1&b\end{bmatrix},\quad R'=\begin{bmatrix}1&c&d\\0&0&0\end{bmatrix}

then (c,-1,0) is a solution for the system of R', but not a solution for the system of R, a contradiction, thus R and R' must have the same number of rows.
If both R and R have one row, let

R=\begin{bmatrix}1&a&b\\0&0&0\end{bmatrix},\quad R'=\begin{bmatrix}1&c&d\\0&0&0\end{bmatrix}

then (c,-1,0) is a solution for the system of R', thus a solution for the system of R, so

c-a+0\cdot b=0 \Rightarrow c=a

similarly use the solution (d,0,-1) we get b=d, thus R=R' in this case.

If both R and R have two rows, let

R=\begin{bmatrix}1&0&a\\0&1&b\end{bmatrix},\quad R'=\begin{bmatrix}1&0&c\\0&1&d\end{bmatrix}

then it’s easy to see b=d, otherwise (0,b,-1) can’t be a solution for the system of R', also a=c, since (a,0,-1) is a solution for the system of R' and we have a-c=0. The proof is complete.

Linear Algebra (2ed) Hoffman&Kunze 1.3

Hoffman这本书有个特点,初读文字有些拗口,英语没点阅读功底容易理解错误他的意思,但是如果能读进去,就能发现这本书最好的地方:视角高。如果说Rudin的分析是大巧不工的大师级,Hoffman的线代就是一个略有些唠叨的大师级。从1.3开始,就有些体会出这样的意思。这一节至少有如下两个拔高:矩阵拔高到函数维度,row-equivalence是一个等价关系。
这一节说Matrix和elementary row operations,我在学北大王萼芳那本高等代数时候也是先学的这一块(当然要在行列式之后),当时就觉得很难理解,把一堆数排成方块形有什么作用,对行进行变换的时候为何选那特定的三种变换。Hoffman是从上一节说的system of linear equations得出的matrix,实际是系数矩阵,但随后正式给的定义又是:matrix是从整数对(i,j)F的一个函数,其entry就是这一函数在特定的(i,j)上的取值;我们常见的矩阵的样子是矩阵最方便的一种表示。
接下来给出三种elementary row operations:某一行变为原来的c(c\neq 0);变为自身加上另外一行的c倍;调换两行。这三种都可以分别用一个函数e精确的表示出来,这个e是定义在一个固定的m(矩阵的行数)上,不用管列是多少。为何选这三种?最重要的是这三种方式可以用同样的方式可逆,也就是Theorem 2的结论。由elementary row operations得到的矩阵和原来矩阵是row-equivalent的,并且揭示了row-equivalent满足self-reflexive,symmetric和transitivity,故而是一个等价关系。由于elementary row operations不会改变以该矩阵作为coefficient matrix的方程组系统的解空间,因此Theorem 3说明:row-equivalent的两个矩阵为coefficient matrix对应的方程组系统有相同的解空间。
最后,有一个row-reduced的定义,即满足一是每一个非零行从左往右先碰到的非零元素(leading non-zero entry)必须是1,二是含有“一是”里这样的1的列,其他元素都是0。Theorem 4说明任何一个matrix都可以被row-reduced。证明是纯说理性的,可能那个时代(20世纪70年代)画图不易,硬是像讲故事一样把证明说清楚了。

Exercises

1. Find all solutions to the system of equations

(1-i)x_1-ix_2=0\\2x_1+(1-i)x_2=0

Solution: We have

\begin{cases}(1-i) x_1-ix_2=0\\2x_1+(1-i) x_2=0\end{cases}  \Rightarrow \begin{cases}2x_1-(1+i)ix_2=0\\2x_1+(1-i) x_2=0\end{cases}  \Rightarrow \begin{cases}2x_1+(1-i)x_2=0\\2x_1+(1-i) x_2=0\end{cases}

so let x_2=c, we have x_1=(i-1)c/2, so all solutions to the system is

x_1=\dfrac{(i-1)c}{2},\quad x_2=c,\quad \forall c\in C.

2. If A=\begin{bmatrix}3&-1&2\\2&1&1\\1&-3&0 \end{bmatrix}, find all solutions of AX=0 by row-reducing A.

Solution: Since

\begin{bmatrix}3&-1&2\\2&1&1\\1&-3&0\end{bmatrix}\rightarrow\begin{bmatrix}0&8&2\\0&7&1\\1&-3&0\end{bmatrix}\rightarrow\begin{bmatrix}0&1&1\\0&7&1\\1&-3&0\end{bmatrix}\\ \rightarrow\begin{bmatrix}0&1&1\\0&0&-6\\1&0&3\end{bmatrix}\rightarrow\begin{bmatrix}0&1&1\\0&0&1\\1&0&3\end{bmatrix}\rightarrow\begin{bmatrix}0&1&0\\0&0&1\\1&0&0\end{bmatrix}

so AX=0 has only trivial solutions.

3. If A=\begin{bmatrix}6&-4&0\\4&-2&0\\-1&0&3 \end{bmatrix}, find all solutions of AX=2X and AX=3X.

Solution: It’s equivalent to solving (A-2I)X=0 and (A-3I)X=0, use row-reducing we have

A-2I=\begin{bmatrix}4&-4&0\\4&-4&0\\-1&0&1\end{bmatrix}\rightarrow\begin{bmatrix}1&-1&0\\0&0&0\\0&1&1\end{bmatrix}

so let x_2=c, we have x_1=c and x_3=-c, so all solutions to the system (A-2I)X=0 is (c,c,-c),c\in C.

A-3I=\begin{bmatrix}3&-4&0\\4&-5&0\\-1&0&0\end{bmatrix}\rightarrow\begin{bmatrix}0&0&0\\0&1&0\\1&0&0\end{bmatrix}

so all solutions to the system (A-3I)X=0 is (0,0,c),c\in C.

4. Find a row-reduced matrix which is row-equivalent to A=\begin{bmatrix}i&-(1+i)&0\\1&-2&1\\1&2i&-1 \end{bmatrix}

Solution:

\begin{bmatrix}i&-(1+i)&0\\1&-2&1\\1&2i&-1\end{bmatrix}\rightarrow\begin{bmatrix}0&-1+i&-i\\1&-2&1\\0&2i+2&-2\end{bmatrix}\\ \rightarrow\begin{bmatrix}0&-1+i&-i\\1&-2&1\\0&i+1&-1\end{bmatrix}\rightarrow\begin{bmatrix}0&0&0\\1&-2&1\\0&1&\frac{i-1}{2}\end{bmatrix}\rightarrow\begin{bmatrix}0&0&0\\1&0&i\\0&1&\frac{i-1}{2}\end{bmatrix}

5. Prove that the following two matrices are not row-equivalent:

\begin{bmatrix}2&0&0\\a&-1&0\\b&c&3 \end{bmatrix},\quad \begin{bmatrix}1&1&2\\-2&0&-1\\1&3&5 \end{bmatrix}

Solution: The first matrix can be row reduced to

\begin{bmatrix}2&0&0\\a&-1&0\\b&c&3\end{bmatrix}\rightarrow\begin{bmatrix}1&0&0\\0&-1&0\\0&c&3\end{bmatrix}\rightarrow\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}

the second matrix can be row-reduced to

\begin{bmatrix}1&1&2\\-2&0&-1\\1&3&5\end{bmatrix}\rightarrow\begin{bmatrix}1&1&2\\0&2&3\\0&2&3\end{bmatrix}\rightarrow\begin{bmatrix}1&1&2\\0&1&1/2\\0&0&0\end{bmatrix}\rightarrow\begin{bmatrix}1&0&2\\0&1&1/2\\0&0&0\end{bmatrix}

thus they are not row-equivalent.

6. Let A=\begin{bmatrix}a&b\\c&d\end{bmatrix} be a 2\times 2 matrix with complex entries. Suppose that A is row-reduced and also that a+b+c+d=0. Prove that there are exactly three such matrices.

Solution: The zero matrix \begin{bmatrix}0&0\\0&0\end{bmatrix} is row-reduced and satisfy a+b+c+d=0, suppose there’re nonzero entries, then at least two entries shall be nonzero, otherwise contradicting a+b+c+d=0, consider the case when there’re exactly 2 nonzero entries, then they can’t belong to different rows, since then the matrix would be \begin{bmatrix}1&0\\0&1\end{bmatrix} or \begin{bmatrix}0&1\\1&0\end{bmatrix}, under the restriction of row-reduced, but then contradicting a+b+c+d=0, in the case when they belong to the same row, we get the matrix \begin{bmatrix}1&-1\\0&0\end{bmatrix} or \begin{bmatrix}0&0\\1&-1\end{bmatrix} satisfy the condition.
Now consider the case when there’re exactly 3 nonzero entries, then the matrix is of the form \begin{bmatrix}1&b\\0&d\end{bmatrix} or \begin{bmatrix}0&b\\1&d\end{bmatrix}, but notice then either b=0,d=1 or b=1,d=0, under the restriction of row-reduced, this contradicting a+b+c+d=0.
Finally the case when all 4 entries is nonzero contradicts the restriction of row-reduced.
Thus there’re exactly three such matrices: \begin{bmatrix}0&0\\0&0\end{bmatrix}, \begin{bmatrix}1&-1\\0&0\end{bmatrix} and \begin{bmatrix}0&0\\1&-1\end{bmatrix}.

7. Prove that the interchange of two rows of a matrix can be accomplished by a finite sequence of elementary row operations of the other two types.

Solution: It’s enough to show the process for a two-row matrix:

\begin{aligned}\begin{bmatrix}a_1&\cdots&a_n\\b_1&\cdots&b_n\end{bmatrix} \xrightarrow {\text{add row1 to row2}}\begin{bmatrix}a_1&\cdots&a_n\\b_1+a_1&\cdots&b_n+a_n\end{bmatrix} \\ \xrightarrow{\text{add (-1)*row2 to row1}} \begin{bmatrix}-b_1&\cdots&-b_n\\b_1+a_1&\cdots&b_n+a_n\end{bmatrix}\\ \xrightarrow{\text{add row1 to row2}} \begin{bmatrix}-b_1&\cdots&-b_n\\a_1&\cdots&a_n\end{bmatrix}\\ \xrightarrow{\text{multiply row1 by -1}}\begin{bmatrix}b_1&\cdots&b_n\\a_1&\cdots&a_n\end{bmatrix}\end{aligned}

8. Consider the system of equations AX=0 where A=\begin{bmatrix}a&b\\c&d\end{bmatrix} is a 2\times 2 matrix over the field F. Prove the following:
(a) If every entry of A is 0, then every pair (x_1,x_2) is a solution of AX=0.
(b) If ad-bc\neq 0, the system AX=0 has only the trivial solution x_1=x_2=0.
(c) If ad-bc= 0, and some entry of A is different from 0, then there is a solution (x_1^0,x_2^0) such that (x_1,x_2) is a solution if and only if there is a scalar y such that x_1=yx_1^0,x_2=yx_2^0.

Solution:
(a) We have 0X=0 for every X.
(b) Since a and c can’t both be 0, we suppose a\neq 0, use row reduction, we have

A=\begin{bmatrix}a&b\\c&d\end{bmatrix}\rightarrow\begin{bmatrix}a&b\\ca&da\end{bmatrix}\rightarrow\begin{bmatrix}a&b\\0&ad-bc\end{bmatrix}\rightarrow\begin{bmatrix}1&0\\0&1 \end{bmatrix}

and the conclusion follows.
(c) If both a and c is 0, then A is row-equivalent to \begin{bmatrix}0&1\\0&0\end{bmatrix} or \begin{bmatrix}0&0\\0&1\end{bmatrix}. If not, then A is row-equivalent to \begin{bmatrix}a&b\\0&ad-bc\end{bmatrix} or \begin{bmatrix}0&bc-ad\\c&d\end{bmatrix}, in all cases A is row-equivalent to a matrix that has nonzero entries in only one row, thus the system AX=0 has the same solution with

\alpha x_1+\beta x_2=0,\quad (\alpha \neq 0)\vee (\beta \neq 0)

let (x_1^0,x_2^0) be a nonzero solution, then \alpha x_1^0=-\beta x_2^0, thus either \alpha\neq 0, which leads to x_1^0=kx_2^0,k=-\beta/\alpha, or \beta\neq 0, which leads to x_2^0=lx_1^0,l=-\alpha/\beta. If there’s any (x_1,x_2) which satisfies \alpha x_1+\beta x_2=0, then we must also have x_1=kx_2 or x_2=lx_1, and the conclusion follows.
In fact, (x_1^0,x_2^0) is a basis for the solution space in this case, so any (x_1,x_2) being a solution, we must have (x_1,x_2 )=y(x_1^0,x_2^0).

Linear Algebra (2ed) Hoffman&Kunze 1.2

这一节与1.1 Fields一起,是一个基础知识介绍,主要概念包括field和subfield,system of m linear equations in n unknowns,以及什么是solution,什么是homogeneous system。
field需要满足9个条件,subfield则重点介绍的是复数域C上自成一域的集合。域的特征值是挺有意思的一个新概念,一般能遇到的field都是characteristic zero的。
在介绍方程组系统时,很快就引入了linear combination的概念,如果用线性空间的思维来看,equations in n unknowns with coefficients in F可以看作一个线性空间V,如果说一个方程是某个系统中方程的linear combination,那么这一方程处于这个系统在V中span的subfield,如果两个系统等价,按照文中定义,就是他们span成相同的subfield,因此解相同,这也是Theorem1 的内容。并且,V中的任何一个subfield都对应着F^n里的一个subfield(即解空间solution space),当然按照1.2的内容还没法证明VF^n是不是同构(isomorphism)的。

Exercises:

1. Verify that the set of complex numbers described in Example 4 is a subfield of C.
Solution:Let F=\{x+y \sqrt{2}: x,y\in Q\}, then 0=0+0\sqrt{2},1=1+0\sqrt{2}, thus 0,1\in F, let x,y \in F , then x=a+b \sqrt{2},y=c+d \sqrt{2},a,b,c,d \in Q, so we have

x+y=a+c+(b+d)\sqrt{2}\in F
-x=-a-b\sqrt{2}\in F
xy=ac+2bd+(ad+bc)\sqrt{2}\in F
x^{-1}=\frac{1}{a+b\sqrt{2}}=\frac{a-b\sqrt{2}}{a^2-2b^2 }\in F

2. Let F be the field of complex numbers. Are the following two systems of linear equations equivalent? If so, express each equation in each system as a linear combination of the equations in the other system.

\begin{aligned}x_1-x_2&=0\quad\quad 3x_1+x_2&=0\\2x_1+x_2&=0\quad\quad x_1+x_2&=0\end{aligned}

Solution:They are equivalent, since

3x_1+x_2=1/3 (x_1-x_2 )+4/3 (2x_1+x_2 )\\x_1+x_2=-1/3 (x_1-x_2 )+2/3 (2x_1+x_2 )

and

x_1-x_2=(3x_1+x_2 )-2(x_1+x_2)\\2x_1+x_2=1/2 (3x_1+x_2 )+1/2 (x_1+x_2 )

3. Test the following systems of equations as in Exercise 2.

\begin{aligned}-x_1+x_2+4x_3&=0\quad\quad x_1-&&x_3&=0\\x_1+3x_2+8x_3&=0\quad\quad &x_2+3&x_3&=0\\ \frac{1}{2}x_1+x_2+\frac{5}{2}x_3&=0\end{aligned}

Solution: They are equivalent, since

-x_1+x_2+4x_3=-(x_1-x_3 )+(x_2+3x_3)\\ x_1+3x_2+8x_3=(x_1-x_3)+3(x_2+3x_3)\\ 1/2 x_1+x_2+5/2 x_3=1/2 (x_1-x_3 )+(x_2+3x_3)

and

x_1-x_3=-2/3 (-x_1+x_2+4x_3 )+2/3 (1/2 x_1+x_2+5/2 x_3 )\\x_2+3x_3=1/4 (-x_1+x_2+4x_3 )+1/4(x_1+3x_2+8x_3)

4. Test the following systems of equations as in Exercise 2.
\begin{aligned}2x_1+(-1+i)&x_2+&x_4&=0\quad\quad &\left(1+\frac{i}{2}\right)x_1+8x_2-ix_3-x_4&=0\\&3x_2-2ix_3+&5x_4&=0\quad\quad &\frac{2}{3}x_1-\frac{1}{2}x_2+x_3+7x_4&=0\end{aligned}

Solution: They are not equivalent, suppose

a(2x_1+(-1+i) x_2+x_4 )+b(3x_2-2ix_3+5x_4 )=(1+i/2) x_1+8x_2-ix_3-x_4

then compare x_1 we have a=1/2+i/4, compare x_3 we have b=1/2, but then a+5b=3+i/4\neq -1

5. Let F be a set which contains exactly two elements, 0 and 1. Define an addition and multiplication by the tables:

\begin{array}{lr} \begin{array}{c|lr}  {+} & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 0 \end{array} &\quad \begin{array}{c|lr} {\cdot} & 0 & 1 \\ \hline 0 & 0 & 0 \\  1 & 0 & 1  \end{array}  \end{array}

Verify that the set F, together with these two operations, is a field.

Solution: The verification is as follows:

1) Addition is commutative

0+0=0+0,0+1=1=1+0,1+1=0=1+1

2) Addition is associative

0+(0+0)=0=(0+0)+0 \\  0+(1+0)=1=(0+1)+0 \\  0+(0+1)=1=(0+0)+1 \\  0+(1+1)=0+0=0=(0+1)+1 \\  1+(0+0)=1=1+0=(1+0)+0 \\  1+(1+0)=1+1=0=(1+1)+0 \\ 1+(0+1)=0=(1+0)+1 \\ 1+(1+1)=1=0+1=(1+1)+1

3) The 0 is the element 0 in F, since 0+0=0,1+0=1

4) To 0, we have -0=0, to 1, we have -1=1 since 1+1=0

5) Multiplication is commutative

0\cdot 0=0\cdot 0=0,0\cdot 1=1\cdot 0=0,1\cdot 1=1\cdot 1=1

6) Multiplication is associative

0\cdot (0\cdot 0)=0\cdot 0=0=0\cdot 0=(0\cdot 0)\cdot 0 \\ 0\cdot (1\cdot 0)=0\cdot 0=0=0\cdot 0=(0\cdot 1)\cdot 0 \\ 0\cdot (0\cdot 1)=0\cdot 0=0=0\cdot 0=(0\cdot 0)\cdot 1 \\ 0\cdot (1\cdot 1)=0\cdot 1=0=0\cdot 1=(0\cdot 1)\cdot 1 \\ 1\cdot (0\cdot 0)=1\cdot 0=0=0\cdot 0=(1\cdot 0)\cdot 0 \\ 1\cdot (1\cdot 0)=1\cdot 0=0=1\cdot 0=(1\cdot 1)\cdot 0 \\ 1\cdot (0\cdot 1)=1\cdot 0=0=0\cdot 1=(1\cdot 0)\cdot 1 \\ 1\cdot (1\cdot 1)=1\cdot 1=1=1\cdot 1=(1\cdot 1)\cdot 1

7) The 1 is the element 1 in F since 0\cdot 1=0 and 1\cdot 1=1

8) To 1 there’s 1^{-1}=1, since 1\cdot 1=1

9) Multiplication distributes over addition

0\cdot (0+0)=0\cdot 0=0=0+0=0\cdot 0+0\cdot 0 \\ 0\cdot (1+0)=0\cdot 1=0=0+0=0\cdot 1+0\cdot 0 \\ 0\cdot (0+1)=0\cdot 0=0=0+0= 0\cdot 0+0\cdot 1 \\ 0\cdot (1+1)=0\cdot 0=0=0+0=0\cdot 1+0\cdot 1 \\ 1\cdot (0+0)=1\cdot 0=0=0+0=1\cdot 0+1\cdot 0 \\ 1\cdot (1+0)=1\cdot 1=1=1+0=1\cdot 1+1\cdot 0 \\ 1\cdot (0+1)=1\cdot 1=1=0+1=1\cdot 0+1\cdot 1 \\ 1\cdot (1+1)=1\cdot 0=0=1+1=1\cdot 1+1\cdot 1

6. Prove that if two homogeneous systems of linear equations in two unknowns have the same solutions, then they are equivalent.

Solution: Let

\begin{cases}a_1 x_1+a_2 x_2=0\\ b_1 x_1+b_2 x_2=0\end{cases},\quad \begin{cases}c_1 x_1+c_2 x_2=0\\d_1 x_1+d_2 x_2=0 \end{cases}

be two homogeneous system of linear equations, if they have only zero solutions, then (a_1,a_2 ) and (b_1,b_2 ) are linearly independent, thus a basis of R^2, thus they can represent (c_1,c_2 ) and (d_1,d_2 ), vice versa.
If they have non-zero solutions, then either all a_i,b_i,c_i,d_i are 0, or in each of the set (a_1,a_2,b_1,b_2 ) and (c_1,c_2,d_1,d_2 ) we have at least one nonzero element. Without loss of generality we suppose (a_1,a_2 )=k(b_1,b_2 ),(c_1,c_2 )=l(d_1,d_2 ) for some k,l\in R, in which one of b_1,b_2 and one of d_1,d_2 is nonzero, we further suppose b_1\neq 0,d_1\neq 0, then let x_1,x_2 be a common solution, we have

b_2/b_1 =-x_2/x_1 =d_2/d_1 := m

then b_2=b_1 m,d_2=d_1 m, thus

b_1 x_1+b_2 x_2=b_1 x_1+b_1 mx_2=\dfrac{b_1}{d_1}  d_1 (x_1+mx_2 )=\dfrac{b_1}{d_1}  (d_1 x_1+d_2 x_2 )

and also we have

d_1 x_1+d_2 x_2=\dfrac{d_1}{b_1}  (b_1 x_1+b_2 x_2 )

thus the equivalence is proved.

7. Prove that each subfield of the field of complex numbers contains every rational number.

Solution: Let F be a subfield of C, then 1\in F, thus N^+\subset F from the fact that x+y\in F, and Z\subset F since -x\in F and 0\in F, also from x^{-1}\in F we have

A:=\left\{\dfrac{1}{n}:n\in Z \backslash \{0\}\right\}\subset F

finally from xy\in F we see Q=Z\times A\subset F since Q=\{xy:x\in Z,y\in A\}.

8. Prove that each field of characteristic zero contains a copy of the rational number field.

Solution: In a field of characteristic zero, we can successfully define

2:=1+1 \\ 3:=1+1+1 \\ \quad \cdots \\ n:= \underbrace{1+1+\cdots+1}_n

and form a copy of N^+.
Use the property (x\in F)\Rightarrow(-x\in F) we can get a copy of Z.
Use the property (x\in F,x\neq 0)\Rightarrow(x^{-1}\in F) and (x\in F,y\in F)\Rightarrow(xy\in F) we can finally get a copy of Q.