陶哲轩实分析11.8及习题-Analysis I 11.8

Riemann-Stieltjes积分,实质是用α-length代替实数轴长度,很多积分的性质没有变化.

Exercise 11.8.1. Prove Lemma 11.8.4.
Lemma 11.8.4 Let I be a bounded interval, let {\alpha}:X\to\mathbf R be a function defined on some domain X which contains I, and let \mathbf P be a partition of I. Then we have

{\alpha}[I]=\sum\limits_{J\in \mathbf P}{\alpha}[J].

Solution: We prove this by induction on n. More precisely, we let P(n) be the property that whenever I is a bounded interval, and whenever \mathbf P is a partition of I with cardinality n, that {\alpha}[I]=\sum_{J\in \mathbf P}{\alpha}[J].
The case P(0) and P(1) are all easy to prove. Now suppose inductively that P(n) is true for n\geq 1, let I be a bounded interval, and \mathbf P be a partition of I with cardinality n+1.
If I is the empty set or a point, then all the intervals in \mathbf P must also be either the empty set or a point and so every interval has length zero and the claim is trivial. Thus we will assume that I is an interval of the form (a,b],[a,b),(a,b) or [a,b].
Let us first suppose that b\in I, i.e., I is either (a,b] or [a,b]. Since b\in I, we know that one of the intervals K in \mathbf P contains b. Since K is contained in I, it must therefore be of the form (c,b],[c,b], or {b} for some real number c, with a\leq c\leq b (in the latter case of K={b}, we set c:=b). In particular, this means that the set I-K is also an interval of the form [a,c],(a,c),(a,c],[a,c) when c>a, or a point or empty set when a=c. Either way, we easily see that

\displaystyle{{\alpha}[I]={\alpha}(b)-{\alpha}(a)={\alpha}(b)-{\alpha}(c)+{\alpha}(c)-{\alpha}(a)={\alpha}[K]+{\alpha}[I-K]}

On the other hand, since \mathbf P forms a partition of I, we see that \mathbf P-{K} forms a partition of I-K, By the induction hypothesis, we thus have

\displaystyle{{\alpha}[I-K]=\sum_{J\in \mathbf P-{K}}{\alpha}[J]}

Combining these two identities, we obtain

\displaystyle{{\alpha}[I]=\sum_{J\in \mathbf P}{\alpha}[J] }

Now suppose that b\notin I, i.e., I is either (a,b) or [a,b), Then one of the intervals K also is of the form (c,b) or [c,b). In particular, this means that the set I-K is also an interval of the form [a,c],(a,c),(a,c],[a,c) when c>a, or a point or empty set when a=c. The rest of the argument then proceeds as above.

\blacksquare

Exercise 11.8.2. State and prove a version of Proposition 11.2.13 for the Riemann-Stieltjes integral.

Solution: Proposition: Let I be a bounded interval, and let f:I\to\mathbf R be a function. Suppose that \mathbf P and \mathbf P' are partitions of I such that f is piecewise constant both with respect to \mathbf P and with respect to \mathbf P'. Then p.c.\int_{[\mathbf P]} fd{\alpha}=p.c.\int_{[\mathbf P']}fd{\alpha}.

Proof: By Lemma 11.2.7, we know f is piecewise constant with respect to \mathbf P\#\mathbf P', thus the value

\displaystyle{p.c.\int_{[\mathbf P\#\mathbf P']}fd{\alpha}=\sum_{J\in \mathbf P\# \mathbf P'}c_J {\alpha}[J] }

is well defined. Now choose any K\in \mathbf P, then \mathbf P_K=\{J\in \mathbf P\# \mathbf P':J\subseteq K\} is a partition of K, and f is constant with constant value c_K on both K and all elements of \mathbf P_K, thus by Theorem 11.1.13 we have c_J=c_K,\forall J\in \mathbf P_K, and

\displaystyle{{\alpha}[K]=\sum_{J\in \mathbf P_K}{\alpha}[J] \implies c_K {\alpha}[K]=\sum_{J\in \mathbf P_K}c_K {\alpha}[J]=\sum_{J\in \mathbf P_K}c_J {\alpha}[J] }

Also, consider the set \{J\in \mathbf P\# \mathbf P':J\subseteq K \text{ for some }K\in \mathbf P\}\subseteq \mathbf P\# \mathbf P', for any J\in \mathbf P\# \mathbf P', by definition we can find a K\in \mathbf P and a K'\in P' s.t. J=K\cap K', so the two sets are equal. Thus

\displaystyle{\begin{aligned}p.c.\int_{[\mathbf P]}fd{\alpha}&=\sum_{K\in \mathbf P}c_K {\alpha}[K]=\sum_{K\in \mathbf P}\sum_{J\in P_K}c_J {\alpha}[J]=\sum_{J\in \mathbf P\# \mathbf P'}c_J {\alpha}[J]\\&=p.c.\int_{[\mathbf P\# \mathbf P']}fd{\alpha}\end{aligned}}

Similarly we can prove p.c.\int_{[\mathbf P' ]}fd{\alpha}=p.c.\int_{[\mathbf P\# \mathbf P' ]} fd{\alpha}, and the statement is proved.

\blacksquare

Exercise 11.8.3. State and prove a version of Theorem 11.2.16 for the Riemann-Stieltjes integral.

Solution: Proposition: Let I be a bounded interval, and let f:I\to \mathbf R and g:I\to \mathbf R be piecewise constant functions on I. Let {\alpha}:X\to \mathbf R be defined on a domain containing I which is monotone increasing, then
( a ) We have p.c.\int_I (f+g)d{\alpha}=p.c.\int_I fd{\alpha}+p.c.\int_I gd{\alpha}.
( b ) For any real number c, we have p.c.\int_I (cf)d{\alpha}=c(p.c.\int_I fd{\alpha}).
( c ) We have p.c.\int_I (f-g)d{\alpha}=p.c.\int_I fd{\alpha}-p.c.\int_I gd{\alpha}.
( d ) If f(x)\geq 0,\forall x\in I, then p.c.\int_I fd{\alpha}\geq 0.
( e ) If f(x)\geq g(x),\forall x\in I, then p.c.\int_I fd{\alpha}\geq p.c.\int_I gd{\alpha}.
( f ) If f(x)=c,\forall x\in I, then p.c.\int_I fd{\alpha}=c{\alpha}[I].
( g ) Let J be a bounded interval containing I (i.e. I\subseteq J), and let F:J\to \mathbf R be the function

\displaystyle{F(x)=\begin{cases}f(x),&x\in I\\0,&x\notin I\end{cases}}

Then F is piecewise constant on J, and p.c.\int_J Fd{\alpha}=p.c.\int_I fd{\alpha}.
( h ) Suppose that \{J,K\} is a partition of I into two intervals J and K. Then the functions f|_J:J\to \mathbf R and f|_K:K\to \mathbf R are piecewise constant on J and K respectively, and we have

\displaystyle{p.c.\int_I fd{\alpha}=p.c.\int_Jf|_J d{\alpha}+p.c.\int_Kf|_K d{\alpha}}

Proof:
We choose partitions of I: \mathbf P' and \mathbf P'' such that f is piecewise constant with respect to \mathbf P' and g is piecewise constant with respect to \mathbf P''. Then let \mathbf P=\mathbf P'\# \mathbf P'', we can see f and g are piecewise constant with respect to \mathbf P. For any K\in \mathbf P, let c_K,d_K denote the constant value of f and g on K.

( a ) f+g is piecewise constant with respect to \mathbf P, with constant value c_K+d_K on K\in \mathbf P,

\displaystyle{\begin{aligned}p.c.\int_I (f+g)d{\alpha}&=p.c.\int_{[\mathbf P]} (f+g)d{\alpha}=\sum_{K\in \mathbf P}(c_K+d_K){\alpha}[K]\\&=\sum_{K\in \mathbf P}c_K {\alpha}[K]+\sum_{K\in \mathbf P}d_K {\alpha}[K]\\&=p.c.\int_{[\mathbf P]} fd{\alpha}+p.c.\int_{[\mathbf P]} gd{\alpha}\\&=p.c.\int_I fd{\alpha}+p.c.\int_I gd{\alpha}\end{aligned}}

( b ) cf is piecewise constant with respect to \mathbf P, with constant value cc_K on K\in \mathbf P,

\displaystyle{\begin{aligned}p.c.\int_I (cf)d{\alpha}&=p.c.\int_{[\mathbf P]} (cf)d{\alpha}=\sum_{K\in \mathbf P}(cc_K){\alpha}[K]\\&=c\sum_{K\in \mathbf P}c_K {\alpha}[K]=c\left(p.c.\int_{[\mathbf P]} fd{\alpha}\right)\\&=c\left(p.c.\int_I fd{\alpha}\right)\end{aligned}}

( c ) Use ( b ) we have p.c.\int_I (-g)d{\alpha}=-p.c.\int_I gd{\alpha}, then use ( a ) we get

\displaystyle{\begin{aligned}p.c.\int_I(f-g)d{\alpha}&=p.c.\int_I (f+(-g))d{\alpha}\\&=p.c.\int_I fd{\alpha}+p.c.\int_I (-g)d{\alpha}\\&=p.c.\int_Ifd{\alpha}-p.c.\int_Igd{\alpha}\end{aligned}}

( d ) If f(x)\geq 0,\forall x\in I, then c_K\geq 0,\forall K\in \mathbf P, since {\alpha} is monotone increasing we have c_K {\alpha}[K]\geq 0,\forall K\in \mathbf P, thus

\displaystyle{p.c.\int_I fd{\alpha}=p.c.\int_{[\mathbf P]} fd{\alpha}=\sum_{K\in P}c_K {\alpha}[K]\geq 0}

( e ) We have f(x)-g(x)\geq 0,\forall x\in I, so use ( d ) we have

\displaystyle{p.c.\int_I (f-g)d{\alpha}=p.c.\int_I fd{\alpha}-p.c.\int_I gd{\alpha}\geq 0 \\ \implies p.c.\int_I fd{\alpha}\geq p.c.\int_I gd{\alpha}}

( f ) If f(x)=c,\forall x\in I, then c_K=c,\forall K\in P, so we have by Lemma 11.8.4

\displaystyle{p.c.\int_I fd{\alpha}=p.c.\int_{[\mathbf P]} fd{\alpha}=\sum_{K\in \mathbf P}c_K {\alpha}[K]=c\sum_{K\in \mathbf P}{\alpha}[K] =c{\alpha}[I]}

(g) The set \mathbf P\cup \{J-I\} is a partition of J, and F is piecewise constant on \mathbf P\cup \{J-I\}, with additional constant value c_{J-I}=0, thus

\displaystyle{\begin{aligned}p.c.\int_J Fd{\alpha}&=p.c.\int_{[\mathbf P\cup \{J-I\}]} Fd{\alpha}=\sum_{K\in \mathbf P\cup \{J-I\}}c_K {\alpha}[K]\\&=\sum_{K\in \mathbf P}c_K {\alpha}[K]+0\cdot {\alpha}[J-I]=\sum_{K\in \mathbf P}c_K {\alpha}[K]\\&=p.c.\int_I fd{\alpha}\end{aligned}}

( h ) We have \mathbf P_J=\{L\cap J:L\in P\} and \mathbf P_K=\{L\cap K:L\in P\} partitions of J and K, and since f is piecewise constant with \mathbf P, it’s easy to see f|_J is piecewise constant with \mathbf P_J on J, f|_K is piecewise constant with \mathbf P_K on K. As we have J\subseteq I and K\subseteq I, we define

\displaystyle{F(x)=\begin{cases}f|_J (x),&x\in J\\0,&x\notin J\end{cases},\quad G(x)=\begin{cases}f|_K (x),&x\in K\\0,&x\notin K\end{cases}}

Since \{J,K\} is a partition of I, we have f=f|_J+f|_K=F+G, thus use ( a ) ,( g ) we have

\displaystyle{\begin{aligned}p.c.\int_I fd{\alpha}&=p.c.\int_I(F+G)d{\alpha}=p.c.\int_I Fd{\alpha}+p.c.\int_I Gd{\alpha}\\&=p.c.\int_Jf|_J d{\alpha}+p.c.\int_K^ f|_K d{\alpha}\end{aligned}}

\blacksquare

Exercise 11.8.4. State and prove a version of Theorem 11.5.1 for the Riemann-Stieltjes integral.

Solution: Proposition: Let I be a bounded interval, and let f be a function which is uniformly continuous on I. Let {\alpha}:X\to \mathbf R be defined on a domain containing I which is monotone increasing, Then f is Riemann-Stieltjes integrable on I with respect to {\alpha}.

Proof: From Proposition 9.9.15 we see that f is bounded. Now we have to show that \underline{\int}_I fd{\alpha}=\overline{\int}_I fd{\alpha}.
If I is a point or the empty set then the theorem is trivial, so let us assume that I is one of the four intervals [a,b],(a,b),(a,b], or [a,b) for some real numbers a0 be arbitrary. By uniform continuity, there exists a {\delta}>0 such that |f(x)-f(y)|<{\varepsilon} whenever x,y\in I,|x-y|<{\delta}. By the Archimedean principle, there exists an integer N>0 such that (b-a)/N<{\delta}, Note that we can partition I into N intervals J_1,\dots,J_N, each of length (b-a)/N, we thus have

\displaystyle{\overline{\int}_I fd{\alpha}\leq \sum_{k=1}^N\left(\sup_{x\in J_k} f(x) \right){\alpha}[J_k],\quad \underline{\int}_I fd{\alpha}\geq \sum_{k=1}^N\left(\inf_{x\in J_k} f(x)\right){\alpha}[J_k] }

So we have

\displaystyle{\begin{aligned}\overline{\int}_I fd{\alpha}-\underline{\int}_I fd{\alpha}&\leq \sum_{k=1}^N\left(\sup_{x\in J_k} f(x)-\inf_{x\in J_k} f(x) \right){\alpha}[J_k] \\&\leq {\varepsilon}\sum_{k=1}^N{\alpha}[J_k] ={\varepsilon}{\alpha}[I]={\varepsilon}({\alpha}(b)-{\alpha}(a))\end{aligned}}

This shows \underline{\int}_I fd{\alpha}-\overline{\int}_I fd{\alpha} cannot be positive.

\blacksquare

Exercise 11.8.5. Let \text{sgn} :\mathbf R\to \mathbf R be the signum function

\text{sgn} (x):=\begin{cases}1&\text{when }x>0\\0&\text{when }x=0\\-1&\text{when }x<0\end{cases}

Let f:[-1,1]\to\mathbf R be a continuous function. Show that f is Riemann-Stieltjes integrable with respect to \text{sgn}, and that

\displaystyle{\int_{[-1,1]}fd \text{sgn} =2f(0)}

Solution: We let {\varepsilon}>0 be arbitrary. Then since f is continuous, \exists {\delta}>0 such that

\displaystyle{|f(x)-f(0)|<{\varepsilon},\quad \forall x\in (-{\delta},{\delta})}

Since f is continuous on [-1,1], f is bounded, thus \exists M>0, s.t.

\displaystyle{|f(x)|\leq M,\quad \forall x\in [-1,1]}

We let \{[-1,-{\delta}],(-{\delta},{\delta}),[{\delta},1]\} be a partition of [-1,1], then the piecewise constant function

\displaystyle{g(x)=\begin{cases}f(0)+{\varepsilon},&x\in (-{\delta},{\delta})\\M,&x\in [-1,1]\backslash (-{\delta},{\delta})\end{cases}}

majorizes f and we have

\displaystyle{\begin{aligned}&\quad\quad\overline{\int}_{[-1,1]} fd\text{sgn}\leq \int_{[-1,1]}gd\text{sgn}\\&=M(\text{sgn}(-{\delta})-\text{sgn}(-1))+(f(0)+{\varepsilon})(\text{sgn}({\delta})-\text{sgn}(-{\delta}))+M(\text{sgn}(1)-\text{sgn}({\delta}))\\&=2(f(0)+{\varepsilon})\end{aligned}}

Similarly, the piecewise constant function

\displaystyle{h(x)=\begin{cases}f(0)-{\varepsilon},&x\in (-{\delta},{\delta})\\-M,&x\in [-1,1]\backslash(-{\delta},{\delta}) \end{cases}}

minorizes f and we have

\displaystyle{\underline{\int}_{[-1,1]}fd\text{sgn}\geq \int_{[-1,1]}hd\text{sgn}=2(f(0)-{\varepsilon})}

Thus we have

\displaystyle{2(f(0)-{\varepsilon})\leq \underline{\int}_{[-1,1]} fd\text{sgn}\leq \overline{\int}_{[-1,1]}fd\text{sgn}\leq 2(f(0)+{\varepsilon})}

And the result follows.

\blacksquare

陶哲轩实分析11.6及习题-Analysis I 11.6

单调函数是Riemann可积的,并且介绍了integral test和重要的1/n^{p}级数收敛判别

Exercise 11.6.1. Use Proposition 11.6.1 to prove Corollary 11.6.3.
Corollary 11.6.3 Let I be a bounded interval, and let f:I\to\mathbf R be both monotone and bounded. Then f is Riemann integrable on I.

Solution: If I is of the form [a,b] then by Proposition 11.6.1 f can be Riemann integrable. So we suppose I is of the form (a,b),(a,b],[a,b).
Since f is bounded, \exists M>0,-M\leq f(x)\leq M,\forall x\in I, choose 0<{\varepsilon}<(b-a)/2 to be a small number, then by Proposition 11.6.1, f is Riemann integrable on [a+{\varepsilon},b-{\varepsilon}], in particular we can find a piecewise constant function h on [a+{\varepsilon},b-{\varepsilon}] which majorizes f and

\displaystyle{\int_{[a+{\varepsilon},b-{\varepsilon}]}h<\int_{[a+{\varepsilon},b-{\varepsilon}]}f+{\varepsilon}}

Define

\displaystyle{H(x)=\begin{cases}h(x),&x\in [a+{\varepsilon},b-{\varepsilon}]\\M,&x\in I\backslash[a+{\varepsilon},b-{\varepsilon}] \end{cases}}

Then H majorizes f on I and is piecewise constant, we have

\displaystyle{\overline{\int}_I f\leq \int_IH=\int_{[a+{\varepsilon},b-{\varepsilon}]}h+2M{\varepsilon}<\int_{[a+{\varepsilon},b-{\varepsilon}]}f+(2M+1){\varepsilon}}

By the same logic we have

\displaystyle{\underline{\int}_I f>\int_{[a+{\varepsilon},b-{\varepsilon}]}f-(2M+1){\varepsilon}}

Thus

\displaystyle{\overline{\int}_I f-\underline{\int}_I f<(4M+2){\varepsilon}}

This means f is Riemann integrable on I.

\blacksquare

Exercise 11.6.2. Formulate a reasonable notion of a piecewise monotone function, and then show that all bounded piecewise monotone functions are Riemann integrable.

Solution:

Definition: Let I be a bounded interval, and let f:I\to \mathbf R. We say f is piecewise monotonic on I iff there exists a partition \mathbf P such that f|_J is monotonic on J for all J\in \mathbf P.
If f is a bounded piecewise monotone function, then there exists a partition \mathbf P such that f|_J is bounded and monotonic on J for all J\in \mathbf P. By Corollary 11.6.3 f|_J is Riemann integrable on J for all J\in \mathbf P.
We define

\displaystyle{F_J (x)=\begin{cases}f|_J (x),&x\in J\\0,&x\in I\backslash J \end{cases}}

By Theorem 11.4.1(g), F_J is Riemann integrable on I, and we further have

\displaystyle{f(x)=\sum_{J\in P}F_J(x)}

So by Theorem 11.4.1(a), f is Riemann integrable on I.

\blacksquare

Exercise 11.6.3. Prove Proposition 11.6.4.
Proposition 11.6.4 (Integral test). Let f:[0,\infty )\to\mathbf R be a monotone increasing function which is non-negative (i.e.,f(x)\geq 0 for all x\geq 0). Then the sum \sum_{n=0}^{\infty}f(n) is convergent if and only if \sup_{N>0}\int_{[0,N]}f is finite.

Solution: We consider \int_{[0,N]}f, by Proposition 11.6.1, \int_{[0,N]}f exists for all N\in \mathbf N. We let

\displaystyle{\mathbf P=\{[n,n+1):n=0,1,\dots,N-1\}\cup \{N\}}

be a partition of [0,N], and define \overline{f}(x)=f(n),x\in [n,n+1),\overline{f} (N)=f(N), then \overline{f} majorizes f, thus

\displaystyle{\int_{[0,N]}f\leq \int_{[0,N]}\overline{f}=\sum_{J\in P}\overline{f} (x) =\sum_{n=0}^{N-1}f(n)}

Similarly if we define \underline{f}(x)=f(n+1),x\in [n,n+1),\underline{f}(N)=f(N), then \underline{f} minorizes f, so

\displaystyle{\int_{[0,N]}f\geq \int_{[0,N]}\underline{f}=\sum_{J\in P}\underline{f}(x) =\sum_{n=1}^Nf(n)}

Thus we have \sum_{n=1}^Nf(n)\leq \int_{[0,N]}f\leq \sum_{n=0}^{N-1}f(n). Thus if \sum_{n=0}^{\infty}f(n) converges, we can see that \sum_{n=0}^{\infty}f(n) is an upper bound for \int_{[0,N]}f,\forall N>0, so \sup_{N>0} \int_{[0,N]}f\leq \sum_{n=0}^{\infty}f(n). On the other hand, if \sup_{N>0} \int_{[0,N]}f is finite, and assume \sum_{n=0}^{\infty}f(n) diverges, since f(n)\geq 0,\forall n, we must have \sum_{n=0}^{\infty}f(n)=+{\infty}, thus there is N' such that \sum_{n=0}^{N'}f(n)>\sup(N>0) \int_{[0,N]}f+f(0), this means \sum_{n=1}^{N'}f(n)>\sup_{N>0} \int_{[0,N]} f\geq \int_{[0,N']}f\geq \sum_{n=1}^{N'}f(n), a contradiction.

\blacksquare

Exercise 11.6.4. Give examples to show that both directions of the integral test break down if f is not assumed to be monotone decreasing.

Solution: We can define

\displaystyle{f(x)=\begin{cases}1,&x\in [n+1/4,n+3/4],n\in \mathbf N\\0,&x\in [0,+{\infty}),x\notin [n+1/4,n+3/4],n\in \mathbf N\end{cases}}

then \sum_{n=0}^{\infty}f(n)=0, but \int_{[0,N]}f=N/2, thus \sup_{N>0} \int_{[0,N]}f is not finite.
Conversely we can define

\displaystyle{f(x)=\begin{cases}1,&x=n,n\in \mathbf N\\0,&x\in [0,+{\infty}),x\notin n,n\in \mathbf N\end{cases}}

Then \sum_{n=0}^{\infty}f(n)=+{\infty}, but \int_{[0,N]}f=0, thus \sup_{N>0} \int_{[0,N]}f is finite.

\blacksquare

Exercise 11.6.5. Use Proposition 11.6.4 to prove Corollary 11.6.5.
Corollary 11.6.5 Let p be a real number. Then \sum_{n=1}^{\infty}\frac{1}{n^p} converges absolutely when p>1 and diverges when p\leq 1.

Solution: When p\leq 0, we have 1/n^p\nrightarrow0, thus \sum_{n=1}^{\infty}(1/n^p) diverges.
When p>0, the function f(x)=1/x^p is monotonic decreasing on [1,+{\infty}), and f(x)\geq 0,\forall x\in [1,+{\infty}), thus the condition of Proposition 11.6.4 is satisfied.
Consider

\displaystyle{\int_{[1,N]}f=\int_{[1,N]}\frac{1}{x^p} }

Use Exercise 10.4.3 and some integral calculation we can show that

\displaystyle{\int_{[1,N]}f=\int_{[1,N]}\frac{1}{x^p} =\begin{cases}\dfrac{1}{1-p} (N^{1-p}-1),&p\neq 1\\ \ln N,&p=1\end{cases}}

Thus if 0<p<1, we have N^{1-p}\to {\infty} as N\to {\infty}, so \sup_{N>0} \int_{[0,N]}f is not finite.
if p=1, then \ln N\to {\infty} as N\to {\infty}, so \sup_{N>0} \int_{[0,N]}f is not finite.
If p>1, then for any N we have

\displaystyle{\int_{[1,N]}f=\frac{1}{1-p} \left(\frac{1}{N^{p-1}} -1\right)=\frac{1}{p-1} \left(1-\frac{1}{N^{p-1}} \right)<\frac{1}{p-1}}

so \sup_{N>0} \int_{[0,N]}f is finite.
Thus we can conclude \sum_{n=1}^{\infty}(1/n^p) only converges when p>1.

\blacksquare

陶哲轩实分析11.5及习题-Analysis I 11.5

有界的逐段连续函数是Riemann可积的

Exercise 11.5.1. Prove Proposition 11.5.6.
Proposition 11.5.6. Let I be a bounded interval, and let f:I\to\mathbf R be both peicewise continuous and bounded. Then f is Riemann integrable.

Solution: Since f is piecewise continuous, we can find a parititon \mathbf P such that f|_J is continuous on J for \forall J\in \mathbf P. By Proposition 11.5.3, we have f|_J is Riemann integrable on J.
We define

\displaystyle{F_J (x)=\begin{cases}f|_J (x),&x\in J\\0,&x\in I\backslash J\end{cases}}

By Theorem 11.4.1(g), F_J is Riemann integrable on I, and we further have

\displaystyle{f(x)=\sum_{J\in \mathbf P}F_J (x)}

So by Theorem 11.4.1(a), f is Riemann integrable on I.

\blacksquare