陶哲轩实分析11.4及习题-Analysis I 11.4

Riemann积分的算律,常规运算基本保持Riemann可积性。

Exercise 11.4.1. Prove Theorem 11.4.1.
Theorem 11.4.1 (Laws of Riemann integration). Let I be a bounded interval, and let f:I\to\mathbf R and g:I\to\mathbf R be Riemann integrable functions on I.
( a ) The function f+g is Riemann integrable, and we have \int_I(f+g)=\int_If+\int_Ig.
( b ) For any real number c, the function cf is Riemann integrable, and we have \int_I(cf)=c(\int_If).
( c ) The function f-g is Riemann integrable, and we have \int_I(f-g)=\int_If-\int_Ig.
( d ) If f(x)\geq 0 for all x\in I, then \int_If\geq 0.
( e ) If f(x)\geq g(x) for all x\in I, then \int_If\geq \int_Ig.
( f ) If f is the constant function f(x)=c for all x in I, then \int_If=c|I|.
( g ) Let J be a bounded interval containing I (i.e.,I\subseteq J), and let F:J\to\mathbf R be the function

F(x):=\begin{cases}f(x)&\text{if }x\in I\\0&\text{if }x\notin I\end{cases}

Then F is Riemann integrable on J, and \int_JF=\int_If.
( h ) Suppose that {J,K} is a partition of I into two intervals J and K. Then the functions f|_J:J\to\mathbf R and f|_K:K\to\mathbf R are Riemann integrable on J and K respectively, and we have

\displaystyle{\int_If=\int_Jf|_J+\int_Kf|_K}

Solution: Since f and g are both Riemann integrable, we have

\displaystyle{\overline{\int}_I f=\underline{\int}_I f,\quad \overline{\int}_I g=\underline{\int}_I g}

So for \forall {\varepsilon}>0, we have piecewise constant function \overline{f} majorizes f, \underline{f} minorizes f, \overline{g} majorizes g, \underline{g} minorizes g, such that

\displaystyle{{\int}_I f-{\varepsilon}<{\int}_I \underline{f}\leq {\int}_I f\leq {\int}_I \overline{f}<{\int}_I f+{\varepsilon},\\{\int}_I g-{\varepsilon}<{\int}_I \underline{g}\leq {\int}_I g\leq {\int}_I \overline{g}<{\int}_I g+{\varepsilon}}

( a ) It is easy to prove that \overline{f}+\overline{g} majorizes f+g and \underline{f}+\underline{g} minorizes f+g, so we have

\displaystyle{{\int}_I (\underline{f}+\underline{g}) \leq \underline{\int}_I (f+g)  \leq \overline{\int}_I (f+g)\leq {\int}_I (\overline{f}+\overline{g})}

Use Theorem 11.2.16 we have

\displaystyle{{\int}_I (\underline{f}+\underline{g}) ={\int}_I \underline{f}+{\int}_I \underline{g}>{\int}_I f+{\int}_I g-2{\varepsilon} \\{\int}_I (\overline{f}+\overline{g}) ={\int}_I \overline{f}+{\int}_I \overline{g}<{\int}_I f+{\int}_I g+2{\varepsilon}}

Thus

\displaystyle{\overline{\int}_I (f+g)-\underline{\int}_I (f+g)\leq {\int}_I (\overline{f}+\overline{g}) -{\int}_I (\underline{f}+\underline{g}) <4{\varepsilon}}

So f+g is Riemann integrable, and

\displaystyle{{\int}_I f+{\int}_I g-2{\varepsilon}<{\int}_I (\underline{f}+\underline{g}) \leq {\int}_I (f+g) \leq {\int}_I (\overline{f}+\overline{g}) <{\int}_If+{\int}_Ig+2{\varepsilon}}

which shows {\int}_I (f+g) ={\int}_I f+{\int}_I g.

( b ) First suppose c>0, then c\overline{f} majorizes cf, c\underline{f} minorizes cf, so we have

\displaystyle{{\int}_I (c\underline{f}) \leq \underline{\int}_I (cf)  \leq \overline{\int}_I (cf)\leq {\int}_I(c\overline{f})}

Use Theorem 11.2.16 we have

\displaystyle{{\int}_I(c\underline{f}) =c{\int}_I \underline{f}>c{\int}_I f-c{\varepsilon},\quad {\int}_I (c\overline{f}) =c{\int}_I \overline{f}<c{\int}_I f+c{\varepsilon}}

Thus

\displaystyle{c{\int}_I f-c{\varepsilon}<{\int}_I (c\underline{f}) \leq \underline{\int}_I (cf)  \leq \overline{\int}_I (cf)\leq {\int}_I (c\overline{f}) <c{\int}_I f+c{\varepsilon}}

which shows \displaystyle{{\int}_I (cf) =c{\int}_I f}.
Now if c=0, then cf=0, which is a piecewise constant function on I, thus

\displaystyle{{\int}_I (cf) =p.c.{\int}_I (cf) =p.c.{\int}_I (0) =0=0\cdot {\int}_I f}

Now suppose c=-1, then -\overline{f} minorizes -f, -\underline{f} majorizes -f, so we have

\displaystyle{{\int}_I (-\overline{f}) \leq \underline{\int}_I (-f)  \leq \overline{\int}_I (-f)\leq {\int}_I (-\underline{f}) }

Use Theorem 11.2.16 we have

\displaystyle{{\int}_I (-\overline{f}) =-{\int}_I \overline{f}>-{\int}_I f-{\varepsilon},\quad {\int}_I (-\underline{f}) =-{\int}_I \underline{f}<-{\int}_I f+{\varepsilon}}

Thus

\displaystyle{-{\int}_I f-{\varepsilon}<-{\int}_I \overline{f}\leq \underline{\int}_I (-f)  \leq \overline{\int}_I (-f)\leq -{\int}_I \underline{f}<-{\int}_I f+{\varepsilon}}

which shows {\int}_I (-f) =-{\int}_I f.
Finally for any c<0, we have c=(-1)(-c) and cf=(-1)(-cf),-c>0, so use the result for c=-1 and c>0, we have

\displaystyle{{\int}_I (cf) ={\int}_I (-1)(-cf) =-{\int}_I (-cf) =-(-c) {\int}_I f=c{\int}_I f}

( c ) Use (a) and (b) we could have

\displaystyle{{\int}_I(f-g) ={\int}_I (f+(-g)) ={\int}_I f+{\int}_I(-g)={\int}_I f-{\int}_I g}

( d ) The constant function h(x)=0 minorizes f, thus

\displaystyle{{\int}_I f\geq \underline{\int}_I (f)\geq {\int}_I h={\int}_I0\cdot h=0{\int}_I h=0}

( e ) The function f(x)-g(x)\geq 0,\forall x\in I, thus use ( d ) and ( c )

\displaystyle{{\int}_I f-{\int}_I g={\int}_I (f-g) \geq 0 \implies {\int}_I f\geq {\int}_I g}

( f ) In this case, we can use the piecewise constant function integral formula:

\displaystyle{{\int}_I f=p.c.{\int}_I f=\sum_{J\in P}c_J |J| =c\sum_{J\in P}|J| =c|I|}

( g ) We can define \overline{F} and \underline{F} which are piecewise and majorizes/minorizes F as:

\displaystyle{\overline{F}(x)=\begin{cases}\overline{f}(x),&x\in I\\0,&x\notin I\end{cases},\quad \underline{F}(x)=\begin{cases}\underline{f} (x),&x\in I\\0,&x\notin I\end{cases}}

then use Theorem 11.2.16 we have

\displaystyle{{\int}_I f-{\varepsilon}<{\int}_I \underline{f}={\int}_J \underline{F}\leq \underline{\int}_J F\leq \overline{\int}_J F\leq {\int}_J \overline{F}={\int}_I \overline{f}<{\int}_I f+{\varepsilon}}

which shows {\int}_J F={\int}_I f.

( h ) Use Theorem 11.2.16 (h) we have

\displaystyle{{\int}_I \overline{f}={\int}_J \overline{f}|_J +{\int}_K \overline{f}|_K ,{\int}_I \underline{f}={\int}_J \underline{f}|_J +{\int}_K \underline{f}|_K }

thus

\displaystyle{{\int}_I \overline{f}-{\int}_I \underline{f}=({\int}_J\overline{f}|_J -{\int}_J \underline{f}|_J )+({\int}_K\overline{f}|_K -{\int}_K\underline{f}|_K )<2{\varepsilon}}

Since we have \overline{f}\geq f\geq \underline{f} on I,J,K, this means

\displaystyle{{\int}_J\overline{f}|_J -{\int}_J\underline{f}|_J \geq 0,\quad {\int}_K\overline{f}|_K -{\int}_K\underline{f}|_K \geq 0}

Thus we have

\displaystyle{{\int}_J\overline{f}|_J -{\int}_J\underline{f}|_J <2{\varepsilon},{\int}_K\overline{f}|_K -{\int}_K\underline{f}|_K <2{\varepsilon}}

Since \overline{f}|_J majorizes f|_J and \underline{f}|_J minorizes f|_J, we can say f|_J is Riemann integrable on J, by the same logic f|_K is Riemann integrable on K. We let

\displaystyle{F(x)=\begin{cases}f(x),&x\in J\\0,&x\notin J\end{cases},\quad G(x)=\begin{cases}f(x),&x\in K\\0,&x\notin K\end{cases}}

Then f(x)=F(x)+G(x), use (a) and (g) we have

\displaystyle{{\int}_I f={\int}_I F+{\int}_I G={\int}_Jf|_J +{\int}_Kf|_K  }

\blacksquare

Exercise 11.4.2. Let a<b be real numbers, and let f:[a,b]\to\mathbf R be a continuous, non-negative function (so f(x)\geq 0 for all x\in [a,b]). Suppose that \int_{[a,b]}f=0. Show that f(x)=0 for all x\in [a,b].

Solution: Assume \exists c\in [a,b],f(c)>0, since f is continuous, let {\varepsilon}=f(c)/2, then \exists {\delta}>0, s.t.

\displaystyle{|f(x)-f(c)|<{\varepsilon}=f(c)/2,\quad \forall x\in [a,b]\cap (c-{\delta},c+{\delta})}

Since the length of [a,b]\cap (c-{\delta},c+{\delta}) is longer than {\delta}/2, and we have

\displaystyle{f(x)>f(c)/2,\quad \forall x\in [a,b]\cap (c-{\delta},c+{\delta})}

We can define

\displaystyle{g(x)=\begin{cases}f(c)/2,&x\in [a,b]\cap (c-{\delta},c+{\delta})\\f(x),&x\in [a,b],x\notin (c-{\delta},c+{\delta})\end{cases}}

Then we can say g minorizes f on [a,b], since f is Riemann integrable on [a,b], and {[a,b]\cap (c-{\delta},c+{\delta}),[a,b]\backslash(c-{\delta},c+{\delta})} is a partition of [a,b], we can say the function f|_{[a,b]\backslash(c-{\delta},c+{\delta})} is Riemann integrable by Theorem 11.4.1(h), and constant function is Riemann integrable by Theorem 11.4.1(f), thus g is integrable by repeated use of Theorem 11.4.1(g). Now use Theorem 11.4.1(h), (d),(f) we have

\displaystyle{0=\int_{[a,b]}f\geq \int_{[a,b]}g=\int_{[a,b]\cap (c-{\delta},c+{\delta})}\left(\frac{f(c)}{2}\right) +{\int}_{[a,b]\backslash(c-{\delta},c+{\delta})} f\geq \frac{f(c)}{2} \left|\frac{{\delta}}{2}\right|=\frac{{\delta}f(c)}{4}>0}

this is a contradiction.

\blacksquare

Exercise 11.4.3. Let I be a bounded interval, let f:I\to\mathbf R be a Riemann integrable function, and let \mathbf P be a partition of I. Show that

\displaystyle{\int_If=\sum_{J\in \mathbf P}\int_If}

Solution: Repeatly use Theorem 11.4.1(h), we can get

\displaystyle{{\int}_If=\sum_{J\in P}{\int}_Jf|_J =\sum_{J\in P}{\int}_Jf}

\blacksquare

Exercise 11.4.4. Without repeating all the computations in the above proofs, give a short explanation as to why the remaining cases of Theorem 11.4.3 and Theorem 11.4.5 follow automatically from the cases presented in the text.

Solution: It is easy to see from Theorem 11.4.1 that if f is Riemann integrable, then so is -f.
As \min (f,g)=-\max (-f,-g), we settled Theorem 11.4.3.
For Theorem 11.4.5, we already have f_+ g_+ Riemann integrable if f and g are integrable, notice that

f_+ g_-=f_+ (-g)_+ \\ f_- g_+=(-f)_+ g_+ \\f_- g_-=(-f)_+ (-g)_+

and both -f and -g are Riemann integrable, the conclusion follows.

\blacksquare

陶哲轩实分析11.3及习题-Analysis I 11.3

这一节用逐段常值函数定义了上积分和下积分,定义与后续的Lebesgue测度精神相通,使用上积分和下积分定义Riemann积分,并且再定义Riemann和,这样Riemann和的引入更自然一些。

Exercise 11.3.1. Let f:I\to\mathbf R, g:I\to\mathbf R and h:I\to\mathbf R be functions. Show that if f majorizes g and g majorizes h, then f majorizes h. Show that if f and g majorize each other, then they must be equal.

Solution: Since f majorizes g we have f(x)\geq g(x),\forall x\in I, and g majorizes h means g(x)\geq h(x),\forall x\in I, thus we have f(x)\geq h(x),\forall x\in I, which means f majorizes h. If f and g majorizes each other, then it means f(x)\geq g(x),\forall x\in I and g(x)\geq f(x),\forall x\in I, so we shall have f(x)=g(x),\forall x\in I.

\blacksquare

Exercise 11.3.2. Let f:I\to\mathbf R, g:I\to\mathbf R and h:I\to\mathbf R be functions. If f majorizes g, is it true that f+h majorizes g+h? Is is true that f\cdot h majorizes g\cdot h? If c is a real number, is it true that cf majorizes cg?

Solution: We have

\begin{aligned}f \text{ majorizes }g &\implies f(x)\geq g(x),\forall x\in I \\&\implies f(x)+h(x)\geq g(x)+h(x),\forall x\in I\\&\implies (f+h)(x)\geq (g+h)(x),\forall x\in I \\&\implies f+h \text{ majorizes }g+h\end{aligned}

We cannot have fh majorizes gh if f majorizes g, since if we let h(x)=-1 on I, we shall have (fh)(x)=f(x)h(x)=-f(x)\leq -g(x)=g(x)h(x)=(gh)(x).
We cannot have cf majorizes cg if f majorizes g, we could let c=-1 and use a similar proof to show (cf)(x)\leq (cg)(x).

\blacksquare

Exercise 11.3.3. Prove Lemma 11.3.7.
Lemma 11.3.7. Let f:I\to\mathbf R be a piecewise constant function on a bounded interval I. Then f is Riemann integrable, and \int_If=p.c.\int_If.

Solution: For f, we see f(x)\geq f(x),\forall x\in I, thus f majorizes f, and f is piecewise constant, thus by definition of upper Riemann integral we have

\displaystyle{\overline{\int}_I f\leq p.c.\int_If}

By the same logic we have f minorizes f, thus

\displaystyle{ \underline{\int}_I f\geq p.c.\int_I f}

Thus we have \underline{\int}_I f\geq \overline{\int}_I f, use Lemma 11.3.3 we can see f is Riemann integrable, and

\displaystyle{ \int_If=p.c.\int_If}

\blacksquare

Exercise 11.3.4. Prove Lemma 11.3.11.
Lemma 11.3.11. Let f:I\to\mathbf R be a bounded function on a bounded interval I, and let g be a function which majorized f and which is piecewise constant with respect to some partition \mathbf P of I. Then

p.c.\displaystyle{\int_Ig\geq U(f,\mathbf P)}

Similarly, if h is a function which minorizes f and is piecewise constant with respect to \mathbf P, then

p.c.\displaystyle{\int_Ih\leq L(f,\mathbf P)}

Solution: If g is piecewise constant with \mathbf P and majorizes f on I, we denote c_J as the constant value of g for each J\in \mathbf P, then c_J\geq f(x),\forall x\in J, thus

c_J\geq \sup_{x\in J}f(x),\quad \forall J\in P

so we have

\displaystyle{ \begin{aligned}p.c.\int_Ig &=\sum\limits_{J\in \mathbf P}c_J|J|=\sum\limits_{J\in \mathbf P,J\neq \emptyset}c_J|J|\\&\geq \sum\limits_{J\in \mathbf P,J\neq \emptyset}\left(\sup_{x\in J} f(x) \right)|J|=U(f,\mathbf P)\end{aligned}}

A similar proof can show p.c.\int_Ih\leq L(f,\mathbf P).

\blacksquare

Exercise 11.3.5. Prove Proposition 11.3.12.
Proposition 11.3.12. Let f:I\to\mathbf R be a bounded function on a bounded interval I. Then

\displaystyle{\overline{\int}_If=\inf\{U(f,\mathbf P):\mathbf P\text{ is a partition of }I\}}

and

\displaystyle{\underline{\int}_If=\sup\{L(f,\mathbf P):\mathbf P\text{ is a partition of }I\}}

Solution: By Lemma 11.3.11, let \mathbf P be a partition of I. If g is piecewise constant with \mathbf P and majorizes f on I, we have p.c.\int_Ig\geq U(f,\mathbf P), so

\displaystyle{ p.c.\int_Ig\geq \inf \{U(f,\mathbf P):\mathbf P\text{ is a partition of }I\}}

then since g is arbitrary as long as it is piecewise constant with \mathbf P and majorizes f on I,

\displaystyle{ \overline{\int}_I f\geq \inf \{U(f,\mathbf P):\mathbf P\text{ is a partition of }I\}}

On the other hand, let \mathbf P be a partition of I. We define a new piecewise constant function with \mathbf P and majorizes f on I as follows: \forall x\in I,\exists J\in \mathbf P,x\in J, this J is unique, so we let

G(x)=\sup_{x\in J} f(x)

Then G is piecewise constant with \mathbf P and majorizes f on I, further we have

\displaystyle{ p.c.\int_IG=U(f,\mathbf P)}

Thus we can say that

\displaystyle{ \overline{\int}_I f\leq p.c.\int_IG=U(f,\mathbf P)}

Since \mathbf P could be any partition of I, we can say

\displaystyle{ \overline{\int}_I f\leq U(f,\mathbf P),\quad \forall \mathbf P\text{ is a partition of }I}

so it is easy to see

\displaystyle{ \overline{\int}_I f\leq \inf \{U(f,\mathbf P):\mathbf P\text{ is a partition of }I\}}

Thus we can have

\displaystyle{ \overline{\int}_I f=\inf \{U(f,\mathbf P):\mathbf P\text{ is a partition of }I\}}

A similar proof can show that

\displaystyle{ \underline{\int}_I f=\sup \{L(f,\mathbf P):\mathbf P\text{ is a partition of }I\}}

\blacksquare

陶哲轩实分析11.2及习题-Analysis I 11.2

这节介绍逐段常值函数。

Exercise 11.2.1. Prove Lemma 11.2.7.
Lemma 11.2.7. Let I be a bounded interval, let \mathbf P be a partition of I, and let f:I\to\mathbf R be a function which is piecewise constant with respect to \mathbf P. Let \mathbf P' be a partition of I which is finer than \mathbf P. Then f is also piecewise constant with respect to \mathbf P'.

Solution: We choose \forall K\in \mathbf P', then \exists J\in \mathbf P,K\subseteq J, we can know f|_J is constant, thus f is constant on K, this means f is piecewise constant with respect to \mathbf P'.

\blacksquare

Exercise 11.2.2. Prove Lemma 11.2.8.
Lemma 11.2.8. Let I be a bounded interval, and let f:I\to\mathbf R and g:I\to \mathbf R be piecewise constant functions on I. Then the functions f+g,f-g,\max (f,g) and fg are also piecewise constant functions on I. Here of course \max(f,g):I\to\mathbf R is the function \max (f,g)(x):=\max(f(x),g(x)). If g does not vanish anywhere on I (i.e.,g(x)\neq 0 for all x\in I) then f/g is also a piecewise constant function on I.

Solution: By the condition given, there exists partitions \mathbf P and \mathbf P', s.t. f is piecewise constant with respect to \mathbf P, and g is piecewise constant with respect to \mathbf P'.
Now we consider any element K\in \mathbf P\#\mathbf P', by Lemma 11.2.7, f and g are piecewise constant with respect to \mathbf P\#\mathbf P', thus we can have c,d, s.t. f(x)=c,g(x)=d,\forall x\in K, this means:

(f+g)(x)=f(x)+g(x)=c+d,\quad \forall x\in K \\ (f-g)(x)=f(x)-g(x)=c-d,\quad \forall x\in K \\ \max (f,g) (x)=\max (f(x),g(x))=\max (c,d),\quad \forall x\in K \\(fg)(x)=f(x)g(x)=cd,\quad \forall x\in K

If in addition we have g(x)\neq 0,\forall x\in I, we can further have d\neq 0 and

(f/g)(x)=f(x)/g(x)=c/d,\quad \forall x\in K

From above we can see that f+g,f-g,\max (f,g),fg and if g does not vanish on I, f/g are constant on K, since we choose arbitrary K from \mathbf P\#\mathbf P', we conclude all the functions are piecewise constant on I.

\blacksquare

Exercise 11.2.3. Prove Proposition 11.2.13.
Proposition 11.2.13. (Piecewise constant integral is independent of partition). Let I be a bounded interval, and let f:I\to\mathbf R be a function. Suppose that \mathbf P and \mathbf P' are partitions of I such that f is piecewise constant both with respect to \mathbf P and with respect to \mathbf P'. Then p.c.\int_{[\mathbf P]}f=p.c.\int_{[\mathbf P']}f.

Solution: By Lemma 11.2.7, we know f is piecewise constant with respect to \mathbf P \#\mathbf P', thus the value

p.c.\int_{[\mathbf P \#\mathbf P' ]} f=\sum\limits _{J\in \mathbf P \#\mathbf P'}c_J |J|

is well defined. Now choose any K\in \mathbf P, then P_K={J\in \mathbf P \#\mathbf P':J\subseteq K} is a partition of K, and f is constant with constant value c_K on both K and all elements of \mathbf P_K, thus by Theorem 11.1.13 we have c_J=c_K,\forall J\in \mathbf P_K, and

|K|=\sum\limits_{J\in \mathbf P_K}|J| \implies c_K|K|=\sum\limits_{J\in \mathbf P_K}c_K |J|=\sum\limits_{J\in \mathbf P_K}c_J |J|

Also, consider the set \{J\in \mathbf P \#\mathbf P':J\subseteq K\text{ for some }K\in \mathbf P\}\subseteq \mathbf P \#\mathbf P', for any J\in \mathbf P \#\mathbf P', by definition we can find a K\in \mathbf P and a K'\in \mathbf P' s.t. J=K\cap K', so the two sets are equal. Thus

p.c.\int_{[\mathbf P]}f=\sum\limits_{K\in \mathbf P}c_K |K| =\sum\limits_{K\in \mathbf P}\sum_{J\in \mathbf P_K}c_J |J|=\sum\limits_{J\in \mathbf P \#\mathbf P'}c_J |J|=p.c.\int_{[\mathbf P \#\mathbf P']}f

Similarly we can prove p.c.\int_{[\mathbf P' ]}f=p.c.\int_{[\mathbf P \#\mathbf P']}f, and the statement is proved.

\blacksquare

Exercise 11.2.4. Prove Theorem 11.2.16.
Theorem 11.2.16. Let I be a bounded interval, and let f:I\to\mathbf R and g:I\to \mathbf R be piecewise constant functions on I.

Solution: We choose partitions of I: \mathbf P' and \mathbf P'' such that f is piecewise constant with respect to \mathbf P' and g is piecewise constant with respect to \mathbf P''. Then let \mathbf P=\mathbf P' \#\mathbf P'', we can see f and g are piecewise constant with respect to \mathbf P. For any K\in \mathbf P, let c_K,d_K denote the constant value of f and g on K.

( a ) We have p.c.\int_I (f+g)=p.c.\int_If+p.c.\int_Ig.
Solution: f+g is piecewise constant with respect to \mathbf P, with constant value c_K+d_K on K\in \mathbf P, thus

\begin{aligned}p.c.\int_I (f+g) &=p.c.\int_{[\mathbf P]}(f+g) =\sum_{K\in \mathbf P}(c_K+d_K)|K|=\sum_{K\in \mathbf P}c_K |K|+\sum_{K\in \mathbf P}d_K |K|\&=p.c.\int_{[\mathbf P]}f+p.c.\int_{[\mathbf P]}g=p.c.\int_If+p.c.\int_I g \end{aligned}

( b ) For any real number c, we have p.c.\int_I(cf)=c(p.c.\int_If).
Solution: cf is piecewise constant with respect to \mathbf P, with constant value cc_K on K\in \mathbf P

p.c.\int_I(cf) =p.c.\int_{[\mathbf P]}(cf) =\sum_{K\in \mathbf P}(cc_K)|K| =c\sum_{K\in \mathbf P}c_K |K|=c(p.c.\int_{[\mathbf P]}f)=c(p.c.\int_If)

( c ) We have p.c.\int_I (f-g)=p.c.\int_If-p.c.\int_Ig.
Solution: Use (b) we have p.c.\int_I(-g) =-p.c.\int_Ig, then use (a) we get

p.c.\int_I(f-g) =p.c.\int_I(f+(-g)) =p.c.\int_If+p.c.\int_I(-g) =p.c.\int_If-p.c.\int_Ig

( d ) If f(x)\geq 0 for all x\in I, then p.c.\int_If\geq 0.
Solution: If f(x)\geq 0,\forall x\in I, then c_K\geq 0,\forall K\in \mathbf P, so we have c_K |K|\geq 0,\forall K\in \mathbf P

p.c.\int_If=p.c.\int_{[\mathbf P]}f=\sum _{K\in \mathbf P}c_K |K|\geq 0

( e ) If f(x)\geq g(x) for all x\in I, then p.c.\int_If\geq p.c.\int_Ig.
Solution: We have f(x)-g(x)\geq 0,\forall x\in I, so use (d) we have

p.c.\int_I(f-g) =p.c.\int_If-p.c.\int_Ig\geq 0 \implies p.c.\int_If\geq p.c.\int_Ig

( f ) If f is the constant function f(x)=c for all x\in I, then p.c.\int_If=c|I|.
Solution: If f(x)=c,\forall x\in I, then c_K=c,\forall K\in \mathbf P, so we have by Theorem 11.1.13

p.c.\int_If=p.c.\int_{[\mathbf P]}f=\sum_{K\in \mathbf P}c_K |K|=c\sum_{K\in \mathbf P}|K| =c|I|

( g ) Let J be a bounded interval containing I (i.e., I\subseteq J), and let F:J\to\mathbf R be the function

F(x):=\begin{cases}f(x)&\text{if } x\in I\\0&\text{if }x\notin I\end{cases}

Then F is piecewise constant on J, and p.c.\int_JF=p.c.\int_If.
Solution: The set \mathbf P\cup \{J\backslash I\} is a partition of J, and F is piecewise constant on \mathbf P\cup \{J\backslash I\}, with additional constant value c_{J\backslash I}=0, thus

\begin{aligned}p.c.\int_JF&=p.c.\int_{[\mathbf P\cup \{J\backslash I\}]}F=\sum\limits_{K\in \mathbf P\cup \{J\backslash I}\}c_K |K|\\&=\sum\limits_{K\in \mathbf P}c_K |K|+0\cdot |J\backslash I|\\&=\sum\limits_{K\in \mathbf P}c_K |K|=p.c.\int_If\end{aligned}

( h ) Suppose that \{J,K\} is a partition of I into two intervals J and K. Then the functions f|_J:J\to\mathbf R and f|_K:K\to\mathbf R are piecewise constant on J and K respectively, and we have

p.c.\int_If=p.c.\int_Jf|_J+p.c.\int_Kf|_K.

Solution: We have \mathbf P_{\mathbf J}=\{L\cap J:L\in \mathbf P\} and \mathbf P_{\mathbf K}=\{L\cap K:L\in \mathbf P\} be partitions of J and K, and since f is piecewise constant with \mathbf P, it’s easy to see f|_J is piecewise constant with \mathbf P_{\mathbf J} on J, f|_K is piecewise constant with \mathbf P_{\mathbf K} on K. As we have J\subseteq I and K\subseteq I, we define

F(x)=\begin{cases}f|_J (x),& x\in J\\0, & x\notin J\end{cases},\quad G(x)=\begin{cases}f|_K (x),& x\in K\\0, &x\notin K\end{cases}

Since {J,K} is a partition of I, we have f=f|_J+f|_K=F+G, thus use (a) ,(g) we have

\begin{aligned}p.c.\int_If&=p.c.\int_I(F+G)=p.c.\int_IF+p.c.\int_IG\\&=p.c.\int_Jf|_J +p.c.\int_Kf|_K \end{aligned}

\blacksquare