陶哲轩实分析9.4及习题-Analysis I 9.4

函数极限性。简单而言,上一节定义的limiting values of functions如果等于函数在这一点的值,就是函数连续。连续性用ε-δ定义和序列定义是等价的,可以证明很多函数都是连续的

Exercise 9.4.1. Prove Proposition 9.4.7.
Proposition 9.4.7 (Equivalent formulations of continuity). Let X be a subset of \mathbf R, let f:X\to \mathbf R be a function, and let x_0 be an element of X. Then the following four statements are logically equivalent:
( a ) f is continuous at x_0.
( b ) For every sequence (a_n)_{n=0}^{\infty} consisting of elements of X with \lim_{n\to\infty}a_n=x_0, we have \lim_{n\to\infty}f(a_n)=f(x_0).
( c ) For every \varepsilon >0, there exists a \delta >0 such that |f(x)-f(x_0)|<\varepsilon for all x\in X with |x-x_0|<\delta. ( d ) For every \varepsilon >0, there exists a \delta >0 such that |f(x)-f(x_0)|\leq\varepsilon for all x\in X with |x-x_0|\leq\delta.

Solution:
( a ) and ( b ) are equivalent :

\begin{aligned}(f\text{ is continuous at }x_0) &\iff (\lim_{x\to x_0;x\in X}f(x)=f(x_0 )) \\&\iff ((\forall (a_n )_{n=0}^{\infty} \in E,\lim_{n\to {\infty} }a_n=x_0 )\implies \lim_{n\to {\infty} }f(a_n)=f(x_0))\end{aligned}

( a ) implies ( c ): Get directly from the definition of \lim_{x\to x_0;x\in X}f(x)=f(x_0 ).
( c ) implies ( d ): Obviously true.
( d ) implies ( a ): Let \forall \varepsilon >0, then due to (d), \exists \delta '>0, s.t. |f(x)-f(x_0)|\leq \varepsilon /2 for every x\in X with |x-x_0 |\leq \delta ', so if we let \delta =\delta ', then |x-x_0 |<\delta means |x-x_0 |\leq \delta ', and

|f(x)-f(x_0)|\leq \varepsilon /2 \implies |f(x)-f(x_0 )|<\varepsilon \implies \lim\limits_{x\to x_0;x\in X}f(x)=f(x_0 )

\blacksquare

Exercise 9.4.2. Let X be a subset of \mathbf R, and let c\in \mathbf R. Show that the constant function f:X\to \mathbf R defined by f(x):=c is continuous, and show that the identity function g:X\to \mathbf R defined by g(x):=x is also continuous.

Solution: First for every x_0\in X, we have

\lim\limits_{x\to x_0;x\in X}f(x)=\lim\limits_{x\to x_0;x\in X}c=c=f(x_0 )

So f is continuous on X.
Next, for every x_0\in X, we have

\lim\limits_{x\to x_0;x\in X}g(x)=\lim\limits_{x\to x_0;x\in X} x=x_0=g(x_0 )

So g is continuous on X.

\blacksquare

Exercise 9.3.3. Prove Proposition 9.4.10.
Proposition 9.4.10 (Exponentiation is continuous, I) Let a>0 be a positive real number. Then the function f:\mathbf R\to \mathbf R defined by f(x):=a^x is continuous.

Solution: Choose \forall x_0\in \mathbf R, we prove f(x)=a^x is continuous at x_0. As a>0, we have a^{x_0 }>0.
\forall \varepsilon >0, from Lemma 6.5.3 we can find a N\in \mathbf N, s.t. |a^{1/n}-1|<\varepsilon /a^{x_0} for all n>N. Since

|a^x-a^{x_0} |=a^{x_0 } |a^{x-x_0}-1|

We choose \delta '=1/(N+1), then \forall x\in  \mathbf R with 0\leq x-x_0<\delta ', we can find a k>N, s.t.

1/(k+1)<x-x_0<1/k

Thus |a^{x-x_0}-1| is between |a^{1/k}-1| and |a^{1/k+1}-1|, which means

|a^{x-x_0}-1|<\varepsilon /a^{x_0 }  \implies  |a^x-a^{x_0 } |=a^{x_0} |a^{x-x_0}-1|<\varepsilon

Also, from Lemma 6.5.3 we can find a N'\in \mathbf N, s.t. |a^{-1/n}-1|<\varepsilon /a^{x_0} for all n>N'. Since

|a^x-a^{x_0} |=a^{x_0} |a^{x-x_0}-1|

We choose \delta ''=1/(N'+1), then \forall x\in \mathbf R with 0<x_0-x<\delta '', we can find a k>N', s.t.

1/(k+1)<x_0-x<1/k

Thus |a^{x-x_0}-1| is between |a^{-1/k}-1| and |a^{-1/k+1}-1|, which means

|a^{x-x_0}-1|<\varepsilon /a^{x_0}  \implies  |a^x-a^{x_0} |=a^{x_0} |a^{x-x_0}-1|<\varepsilon

ow let \delta =\min (\delta ',\delta ''), then if |x-x_0 |<\delta , |a^x-a^{x_0} |<\varepsilon , completing the proof.

\blacksquare

Exercise 9.4.4. Prove Proposition 9.4.11.
Proposition 9.4.11 (Exponentiation is continuous, II) Let p be a real number. Then the function f:(0,\infty)\to\mathbf R defined by f(x):=x^p is continuous.

Solution: Since \lim_{x\to 1} x=1, we have \lim_{x\to 1}x^n=(\lim_{x\to 1} x )^n=1 for all natural numbers n, and since when x\to 1,1/x\to 1, so \lim_{x\to 1}x^{-n}=1,n\in \mathbf N. Use prove by contradiction we can show that \lim_{x\to 1}x^{1/n}=1, \forall n\in \mathbf N^+, thus it’s able to conclude \lim_{x\to 1} x^q=1,\forall q\in \mathbf Q.
Now for \forall p\in \mathbf R,\exists q_1,q_2, s.t. q_1\leq p<q_2, so x^p is between x^{q_1} and x^{q_2}, which means
\lim_{x\to 1} x^p=1,\quad \forall p\in \mathbf R

\lim\limits_{x\to 1} x^p=1,\quad \forall p\in \mathbf R

Now for x_0\in (0,+{\infty} ), then x_0^p>0. For \forall \varepsilon >0,\exists \delta >0, s.t. for any x\in (0,+{\infty}) with |x-x_0 |<\delta , we have |(x/x_0 )^p-1|<\varepsilon /x_0^p, thus

|x^p-x_0^p |=x_0^p |(x/x_0 )^p-1|<\varepsilon

\blacksquare

Exercise 9.4.5. Prove Proposition 9.4.13.
Proposition 9.4.13 (Composition preserves continuity). Let X and Y be subsets of \mathbf R, and let f:X\to Y and g:Y\to \mathbf R be functions. Let x_0 be a point in X. If f is continuous at x_0, and g is continuous at f(x_0), then the composition g\circ f:X\to \mathbf R is continuous at x_0.

Solution: Let \forall \varepsilon >0, as g is continuous at f(x_0 ), we can find \delta _1>0, s.t. \forall y\in Y,|y-f(x_0 )|<\delta _1, we can have |g(y)-g\big(f(x_0 )\big)|<\varepsilon . For this \delta _1>0 we can find \delta >0, s.t. \forall x\in X,|x-x_0 |<\delta , we can have |f(x)-f(x_0)|<\delta _1, thus if |x-x_0 |<\delta , we get

|g(f(x))-g(f(x_0 ))|<\varepsilon \implies |(g\circ f)(x)-(g\circ f)(x_0)|<\varepsilon

\blacksquare

Exercise 9.4.6. Let X be a subset of \mathbf R, and let f:X\to \mathbf R be a continuous function. If Y is a subset of X, show that the restriction f|_Y:Y\to \mathbf R of f to Y is also a continuous function.

Solution: Let y_0\in Y, so y_0\in X, and f is continuous at y_0, so \forall \varepsilon >0,\exists \delta >0, s.t. \forall x\in X,|x-y_0 |<\delta , we can have |f(x)-f(y_0)|<\varepsilon .
Use the result above, if y\in Y,|y-y_0 |<\delta , we can have |f(y)-f(y_0)|<\varepsilon , this proves f|_Y:Y\to \mathbf R is continuous at y_0, since y_0 is arbitrarily chosen, f|_Y is continuous.

\blacksquare

Exercise 9.4.7. Let n\geq 0 be an integer, and for each 0\leq i\leq n let c_i be a real number. Let P:\mathbf R\to \mathbf R be the function

P(x):=\sum\limits_{i=0}^nc_ix^i;

such a function is known as polynomial of one variable. Show that P is continuous.

Solution: By Proposition 9.4.9, the function x^i is continuous for each 0\leq i\leq n, thus the function c_i x^i is continuous for each 0\leq i\leq n, at last their sums is continuous.

\blacksquare

陶哲轩实分析9.3及习题-Analysis I 9.3

9.3的题目叫limiting values of functions,在Analysis II里有一节同样题目的章节。这一节限制在R上讨论,函数的极限值是后续讨论continuity的基础,函数极限可以和数列极限等价起来,函数极限是唯一的,满足极限算律,极限也是局部的性质(即只和某一点附近的情况有关)

Exercise 9.3.1. Prove Proposition 9.3.9.
Proposition 9.3.9.Let X be a subset of \mathbf R, let f:X\to \mathbf R be a function, let E be a subset of X, let x_0 be an adherent point of E, and let L be a real number. Then the following two statements are logically equivalent:
( a ) f converges to L at x_0 in E.
( b ) For every sequence (a_0)_{n=0}^{\infty} which consists entirely of elements of E and converges to x_0, the sequence (f(a_n))_{n=0}^{\infty} converges to L.

Solution:
(a) implies (b):

If f converges to L at x_0 in E, then \forall \varepsilon >0,\exists \delta >0, \text{ s.t. } |x-x_0 |<\delta \implies |f(x)-L|<\varepsilon . Let (a_n)_{n=0}^{\infty} \in E such that a_n\to x_0, then \exists N\in \mathbf N, \text{ s.t. } |a_n-x_0 |<\delta ,\forall n>N, so if n>N, we have |f(a_n)-L|<\varepsilon , so (f(a_n))_{n=0}^{\infty} \to L.
(b) implies (a):
Assume f does not converge to L at x_0 in E, then due to axiom of choice, there is a \varepsilon _0>0, such that for \forall N\in \mathbf N,\exists x_n\in E, \text{ s.t. } (|x_n-x_0 |<\delta )\wedge (|f(x_n)-L|\geq \varepsilon ), the sequence (x_n)_{n=0}^{\infty} \in E, but (f(x_n))_{n=0}^{\infty}\nrightarrow L, a contradiction.

\blacksquare

Exercise 9.3.2. Prove the remaining claims in Proposition 9.3.14 (Limit laws for functions).

Solution: Since x_0 is an adherence point of E, we can find (a_n)_{n=0}^{\infty} \in E such that a_n\to x_0, then we have (f(a_n))_{n=0}^{\infty} \to L and (g(a_n ))_{n=0}^{\infty} \to M, by Proposition 9.3.9. Thus: by Theorem 6.1.19 (d):

((f-g)(a_n))_{n=0}^{\infty} \to L-M \implies (f(a_n))_{n=0}^{\infty} -(g(a_n))_{n=0}^{\infty} \to L-M

by Theorem 6.1.19 (g):

((\max (f,g))(a_n))_{n=0}^{\infty} \to \max(L,M) \\ \implies \max ((f(a_n ))_{n=0}^{\infty} ,(g(a_n))_{n=0}^{\infty} )\to \max(L,M)

by Theorem 6.1.19 (h):

((\min (f,g) )(a_n))_{n=0}^{\infty} \to \min(L,M)\\ \implies \min ((f(a_n ))_{n=0}^{\infty} ,(g(a_n))_{n=0}^{\infty} )\to \min (L,M)

by Theorem 6.1.19 (b):

((fg)(a_n))_{n=0}^{\infty} \to LM \\ \implies (f(a_n))_{n=0}^{\infty} (g(a_n))_{n=0}^{\infty} \to LM

by Theorem 6.1.19 (f):

((f/g)(a_n))_{n=0}^{\infty} \to L/M \implies (f(a_n ))_{n=0}^{\infty} /(g(a_n))_{n=0}^{\infty} \to L/M

Then all functions have asserted limits at x_0 in E since the above conclusions are true for arbitrary (a_n)_{n=0}^{\infty} \in E such that a_n\to x_0, and thus by Proposition 9.3.9.

\blacksquare

Exercise 9.3.3. Prove Lemma 9.3.18.
Proposition 9.3.18 (Limits are local). Let X be a subset of \mathbf R, let E be a subset of X, let x_0 be an adherent point of E, let f:X\to \mathbf R be a function, and let L be a real number. Let \delta >0. Then we have

\lim\limits_{x\to x_0;x\in E}f(x)=L\iff \lim\limits_{x\to x_0;x\in E\cap (x_0-\delta,x_0+\delta)}f(x)=L

Solution:

\begin{aligned} &\lim_{x\to x_0;x\in E} f(x)=L \\&\iff \forall \varepsilon >0,\exists \delta '>0,\text{ s.t. } (x\in E)\wedge  (|x-x_0 |<\delta ' )\implies |f(x)-L|<\varepsilon \\ &\iff \forall \varepsilon >0,\exists \delta '>0,\text{ s.t. } (x\in E)\wedge (|x-x_0 |<\min (\delta ,\delta')\leq \delta')\implies |f(x)-L|<\varepsilon \\ &\iff \forall \varepsilon >0,\exists \delta '>0,\text{ s.t. } (x\in E\cap (x_0-\delta ,x_0+\delta ))\wedge  (|x-x_0 |<\delta ' )\implies |f(x)-L|<\varepsilon \\&\iff \lim_{x\to x_0;x\in E \cap (x_0-\delta,x_0+\delta)} f(x)=L \end{aligned}

\blacksquare

Exercise 9.3.4. Propose a definition for limit superior \limsup_{x\to x_0;x\in E}f(x) and limit inferior \liminf_{x\to x_0;x\in E}f(x), and then propose an analogue of Proposition 9.3.9 for you definition. (For an additional challenge: prove that analogue.)

Solution:

A definition for limit superior: we say \limsup_{x\to x_0;x\in E} f(x)=M iff for \forall \varepsilon >0,\exists \delta >0, s.t.

\Big((|x-x_0 |<\delta )\implies (f(x)<M+\varepsilon )\Big)\wedge  \Big(\exists x'\in (x_0-\delta ,x_0+\delta ),f(x' )>M-\varepsilon \Big)

A definition for limit inferior: we say \liminf_{x\to x_0;x\in E}f(x)=m iff for \forall \varepsilon >0,\exists \delta >0, s.t.

\Big((|x-x_0 |<\delta )\implies (f(x)>m-\varepsilon )\Big)\wedge \Big(\exists x'\in (x_0-\delta ,x_0+\delta ),f(x' )<m+\varepsilon \Big)

An analogue of Proposition 9.3.9 (limsup case):
Let E\subseteq X\subseteq R, f:X\to R, x_0\in \overline E, then the following two statements are logically equivalent:
(a) \limsup_{x\to x_0;x\in E}f(x)=M
(b) For any sequence (a_n)_{n=0}^{\infty} \in E,a_n\to x_0, we have \limsup_{n\to {\infty} }f(a_n)\leq M, and there is a sequence (b_n)_{n=0}^{\infty} \in E, b_n\to x_0, such that \lim_{n\to {\infty} }f(b_n)=M.

An analogue of Proposition 9.3.9 (liminf case):
Let E\subseteq X\subseteq R, f:X\to R, x_0\in \overline E, then the following two statements are logically equivalent:
(a) \liminf_{x\to x_0;x\in E}f(x)=m
(b) For any sequence (a_n)_{n=0}^{\infty} \in E,a_n\to x_0, we have \liminf_{n\to {\infty} }f(a_n)\geq m, and there is a sequence (b_n )_{n=0}^{\infty} \in E, b_n\to x_0, such that \lim_{n\to {\infty} }f(b_n)=m.

Proof: I only prove the case for limit superior.
(a) implies (b):
If \limsup_{x\to x_0;x\in E}f(x)=M, then on one hand, \forall \varepsilon >0, the set

A_n=\{x\in E: |x-x_0 |<1/n\text{ and }M-\varepsilon<f(x)<M+\varepsilon \}

is non-empty, use axiom of choice to find a b_n\in A_n and form a sequence (a_n)_{n=0}^{\infty} \in E, it’ s easy to see that b_n\to x_0 and \lim{n\to {\infty} }f(b_n)=M.
On the other hand, assume \exists (a_n)_{n=0}^{\infty} \in E, a_n\to x_0, and \limsup_{n\to {\infty} }f(a_n)=M'>M, then let

\varepsilon =(M'-M)/2>0

We can first have a \delta >0, s.t. (|x-x_0 |<\delta )\implies (f(x)<M+\varepsilon ), and there is a N\in \mathbf N, s.t.

|a_n-x_0 |<\delta ,\quad \forall n>N

which means

f(a_n )<M+\varepsilon ,\quad \forall n>N

But since \limsup_{n\to {\infty} }f(a_n)=M', we can find a K>N, s.t. f(a_K )>M'-\varepsilon , now we have

f(a_K )<M+\varepsilon =M'-\varepsilon <f(a_K )

This is a contradiction.

(b) implies (a):
Assume the first condition is wrong, then we shall find a \varepsilon_ 0>0, s.t. \forall N\in \mathbf N, the set

A_n=\{x\in E:|x-x_0 |<1/n\text{ and }f(x)\geq M+\varepsilon _0\}

is non-empty, choose a_n\in A_n by axiom of choice, then a_n\to x_0 as n\to {\infty} , and

M<M+\varepsilon _0\leq \inf (a_n )\leq \limsup_{n\to {\infty} } f(a_n )\leq M

This is a contradiction.
Assume the second condition is wrong, then \forall x\in (x_0-\delta ,x_0+\delta ),f(x)\leq M-\varepsilon 0 for some \varepsilon _0>0 and any \delta >0, then any sequence (a_n)_{n=0}^{\infty} \in E such that a_n\to x_0 and f(a_n) converges would have \lim_{n\to {\infty} }f(a_n)\leq M-\varepsilon_0<M, this contradicts the existence of (b_n )_{n=0}^{\infty} .

\blacksquare

Exercise 9.3.5. (Continuous version of squeeze test) Let X be a subset of \mathbf R, let E be a subset of X, let x_0 be an adherent point of E, and let f:X\to \mathbf R,g:X\to \mathbf R,h:X\to \mathbf R be functions such that f(x)\leq g(x)\leq h(x) for all x\in E. If we have \lim_{x\to x_0;x\in E}f(x)= \lim_{x\to x_0;x\in E}h(x)=L for some real number L, show that \lim_{x\to x_0;x\in E}g(x) =L.

Solution: Let (a_n)_{n=0}^{\infty} \in E such that a_n\to x_0, by Proposition 9.3.9, we know that both (f(a_n ))_{n=0}^{\infty} and (h(a_n ))_{n=0}^{\infty} converge to L, thus for \forall \varepsilon >0, there’ s N_1,N_2\in \mathbf N, such that

|f(a_n )-L|<\varepsilon ,\quad\forall n>N_1\\|h(a_n )-L|<\varepsilon ,\quad\forall n>N_2

Let N=\max(N_1,N_2), then we shall have

L-\varepsilon <f(a_n )\leq g(a_n )\leq h(a_n )<L+\varepsilon ,\quad\forall n>N

This means (g(a_n ))_{n=0}^{\infty} converges to L, this is true for arbitrary sequence (a_n )_{n=0}^{\infty} \in E which satisfies a_n\to x_0, so we can conclude \lim_{x\to x_0;x\in E} g(x)=L.

\blacksquare