陶哲轩实分析7.5及习题-Analysis I 7.5

两个很重要的test:root test和ratio test,判别级数收敛性的两个重要方法,其中root test比ratio test更聚集一些(Lemma 7.5.2)

Exercise 7.5.1. Prove the first inequality in Lemma 7.5.2.
Solution: To prove

\liminf\limits_{n\to \infty}\frac{c_{n+1}}{c_n} \leq \liminf\limits_{n\to \infty}c_n^{1/n}

We notice c_{n+1}/c_n\geq 0 for all n, so

L:=\liminf\limits_{n\to \infty} \frac{c_{n+1}}{c_n} \geq 0

If L=0, then the inequality is true since c_n>0 \implies c_n^{1/n}>0 \implies \liminf_{n\to \infty}c_n^{1/n} \geq 0. Now we suppose L>0.
For \forall \varepsilon >0, such that L-\varepsilon >0, we can find a N\geq m such that

\dfrac{c_{n+1}}{c_n}>L-\varepsilon ,\quad \forall n\geq N

From induction we know that

c_n>(L-\varepsilon )^{n-N} c_N,\quad \forall n\geq N

We let A=(L-\varepsilon )^{-N} c_N, then c_n>A(L-\varepsilon )^n \implies c_n^{1/n}>A^{1/n} (L-\varepsilon ), use limit laws we have

\liminf\limits_{n\to \infty}c_n^{\frac{1}{n}} \geq \liminf\limits_{n\to \infty}A^{\frac{1}{n}} (L-\varepsilon ) =\lim\limits_{n\to \infty}A^{\frac{1}{n}} (L-\varepsilon )=L-\varepsilon

Since \varepsilon can be arbitrary small (as long as \varepsilon <L), we must have \liminf_{n\to \infty}c_n^{1/n} \geq L.

\blacksquare

Exercise 7.5.2. Let x be a real number with |x|<1, and q be a real number. Show that the series \sum_{n=1}^{\infty}n^qx^n is absolutely convergent, and that \lim_{n\to\infty}n^qx^n=0.
Solution: If q=0, then \sum_{n=1}^{\infty}n^q x^n =\sum_{n=1}^{\infty}x^n and is absolutely convergent. Now first suppose q>0.
We use Ratio test, since a_n=n^q x^n, so that

\dfrac{|a_{n+1} |}{|a_n |} =\dfrac{|(n+1)^q x^{n+1} |}{|n^q x^n |} =\left(\dfrac{n+1}{n}\right)^q |x|

Now as |x|<1, we know that

|x|<\dfrac{|x|+1}{2}<1 \implies \dfrac{2}{|x|+1}>1 \implies \left(\dfrac{2}{|x|+1}\right)^{1/q}>1

Since

\lim\limits_{n\to \infty}\frac{n+1}{n}=1

We know that there’s N\geq 1, such that \forall n\geq N:

1<\dfrac{n+1}{n}\leq \left(\dfrac{2}{|x|+1}\right)^{1/q} \implies \left(\dfrac{n+1}{n}\right)^q |x|\leq \dfrac{2|x|}{|x|+1}

Thus

\limsup\limits_{n\to \infty} \dfrac{|a_{n+1}|}{|a_n |} =\limsup\limits_{n\to \infty}\left(\dfrac{n+1}{n}\right)^q |x| \leq \dfrac{2|x|}{|x|+1}<1

This shows that \sum_{n=1}^{\infty}n^q x^n is absolutely convergent.
Next suppose q<0, then -q>0, so

\dfrac{|a_{n+1}|}{|a_n |} =\left(\dfrac{n+1}{n}\right)^q |x|=\left(\dfrac{n}{n+1}\right)^{-q} |x|<1^{-q} |x|=|x|

Thus

\limsup\limits_{n\to \infty}\dfrac{|a_{n+1}|}{|a_n |} \leq |x|<1

This shows that \sum_{n=1}^{\infty}n^q x^n is absolutely convergent.
By the zero test, \lim_{n\to \infty}n^q x^n =0.

\blacksquare

Exercise 7.5.3. Give an example of a divergent series \sum_{n=1}^{\infty}a_n of positive numbers a_n such that \lim_{n\to\infty}a_{n+1}/a_n=\lim_{n\to\infty}a_n^{1/n}=1, and give an example of a convergent series \sum_{n=1}^{\infty}b_n of positive numbers b_n such that \lim_{n\to\infty}b_{n+1}/b_n=\lim_{n\to\infty}b_n^{1/n}=1. This shows that the ratio and root tests can be inconclusive even when the summands are positive and all the limits converge.
Solution: We let a_n=1/n and b_n=1/n^2, then \sum_{n=1}^{\infty}a_n is divergent and \sum_{n=1}^{\infty}b_n is convergent by Corollary 7.3.7. Next we use Proposition 7.5.4 and limit laws we can get

\dfrac{a_{n+1}}{a_n} =\dfrac{n}{n+1} \implies \lim\limits_{n\to \infty}\dfrac{a_{n+1}}{a_n}=1 \\a_n^{1/n}=\left( \dfrac{1}{n}\right)^{1/n} \implies \lim\limits_{n\to \infty}a_n^{1/n}=1 \\ \dfrac{b_{n+1}}{b_n} =\dfrac{n^2}{(n+1)^2} \implies \lim\limits_{n\to \infty}\dfrac{b_{n+1}}{b_n}=1\times 1=1 \\b_n^{1/n}=\left( \dfrac{1}{n^2}\right)^{1/n} \implies \lim\limits_{n\to \infty}b_n^{1/n}=1^2=1

\blacksquare

陶哲轩实分析7.4及习题-Analysis I 7.4

级数重排对绝对收敛是可以的,但条件级数重排可以收敛到任意其他值或者发散……

Exercise 7.4.1. Let \sum_{n=0}^{\infty}a_n be an absolutely convergent series of real numbers. Let f:\mathbf N \to\mathbf N be an increasing function(i.e., f(n+1)>f(n) for all n\in \mathbf N). Show that \sum_{n=0}^{\infty}a_{f(n)} is also an absolutely convergent series.
Solution: We consider \sum_{n=0}^{\infty}|a_{f(n)}| , and prove it is convergent. Suppose \sum_{n=0}^{\infty}|a_n| =L.
Let T_N=\sum_{n=0}^N|a_{f(n)}| , since the sequence \big(f(n)\big)_{n=0}^N is finite, it must be bounded by M, thus the set \{n\in \mathbf N:0\leq n\leq f(N)\}\subseteq \{n\in \mathbf N:0\leq n\leq M\}, so we have

T_N=\sum\limits_{n=0}^N|a_{f(n)} | \leq \sum\limits_{n=0}^M|a_n | \leq \sum\limits_{n=0}^{\infty}|a_n | =L

So (T_N )_{N=0}^{\infty} is bounded above by L, thus it must be convergent.

\blacksquare

陶哲轩实分析7.3及习题-Analysis I 7.3

处理非负实数的和,与绝对收敛的处理类似,和Cauchy序列类比,得到关于1/n^q序列收敛与否的重要结论。

Exercise 7.3.1. Use Proposition 7.3.1 to prove Corollary 7.3.2.
Solution: That \sum_{n=m}^{\infty}b_n is convergent means \sum_{n=m}^{\infty}b_n =L\in \mathbf R, and |a_n|\leq b_n,\forall n\geq m means the partial sums \sum_{n=m}^N|a_n| \leq \sum_{n=m}^Nb_n ,\forall N\geq m, then use the limit laws and Proposition 7.2.9 we get the conclusion.

\blacksquare

Exercise 7.3.2. Prove Lemma 7.3.3.
Solution: We let S_N=\sum_{n=0}^Nx^n , we use induction to show that S_N=(1-x^{N+1})/(1-x):
When N=0, we have \sum_{n=0}^0x^n =x^0=1 and (1-x^{0+1})/(1-x)=1.
Now suppose S_N=(1-x^{N+1})/(1-x), we have

S_{N+1}=\sum\limits_{n=0}^{N+1}x^n =\sum\limits_{n=0}^Nx^n +x^{N+1}=\dfrac{1-x^{N+1}}{1-x}+x^{N+1}=\dfrac{1-x^{N+2}}{1-x}

Next, we know from Lemma 6.5.2 that

\lim\limits_{n\to {\infty}}x^n=\begin{cases}0,&|x|<1\\1,&x=1\\ \text{diverges},&x=-1\text{ or }|x|>1\end{cases}

So if |x|<1, then when N\to {\infty}, we have S_N\to 1/(1-x), in particular, we can show that

S_N'=\sum\limits_{n=0}^N|x|^n =\dfrac{1-|x|^{N+1}}{1-|x|}

And \lim_{n\to {\infty}}|x|^n=0 since \big||x|\big|=|x|<1, so the series is absolutely convergent.
If |x|\geq 1, we can know that x^n\nrightarrow 0, thus use Zero test we can know the series is divergent.

\blacksquare

Exercise 7.3.3. Let \sum_{n=0}^{\infty}a_n be an absolutely convergent series of real numbers such that \sum_{n=0}^{\infty}|a_n|=0. Show that a_n=0 for every natural number n.
Solution: We suppose a_m=k\neq 0 for some m\in \mathbf N, then |a_m|=|k|>0, thus

\sum\limits_{n=0}^m|a_n|\geq |a_m|>0

Which means

0=\left(\sum\limits_{n=0}^{\infty}|a_n| \right)\geq \left(\sum\limits_{n=0}^m|a_n| \right)\geq |a_m|>0

This is a contradiction.

\blacksquare