陶哲轩实分析6.3及习题-Analysis I 6.3

这一节更像个开胃菜,为后面比较难理解的limsup和liminf做准备。

Exercise 6.3.1. Verify the claim in Example 6.3.4.
Solution: To verify \sup (a_n)_{n=1}^{\infty}=1, we first notice that a_n\leq 1,\forall n, also for any number k<1, since a_1=1\in (a_n)_{n=1}^{\infty}, we have k<a_1, thus k is not an upper bound of {n=1}^{\infty}.
To verify \inf (a_n){n=1}^{\infty}=0, we first see that a_n>0,\forall n, also for any number k>0, by the Archimedean property we have a positive integer N such that Nk>1 or 1/N<k, this means a_N<k, so k is not an lower bound of (a_n)_{n=1}^{\infty}.

\blacksquare

Exercise 6.3.2. Prove Proposition 6.3.6.
Solution: We let E=\{a_n:n\geq m\}, then x=\sup E by Definition 6.3.1, and by Theorem 6.2.11 (a), for all n\geq m we have a_n\in E, thus a_n\leq x.
If M\in \mathbf R^* is an upper bound for a_n, then M is an upper bound for E, by Theorem 6.2.11 (b) we have x\leq M.
If y\in \mathbf R^*,y<x, then y\neq +{\infty}, assume for all n\geq m we have a_n\leq y, then y is an upper bound of E, also +{\infty}\notin E, so x=\sup E=\sup E\backslash\{-{\infty}\}, as E\backslash \{-{\infty}\}\in \mathbf R, x shall be no larger than y by definition, this is an contradiction.

\blacksquare

Exercise 6.3.3. Prove Proposition 6.3.8.
Solution: Let x=\sup (a_n)_{n=1}^{\infty}, then x\leq M by Proposition 6.3.6. Let \forall \varepsilon >0, we have x-\varepsilon <x, so

\exists N\geq m,\quad x-\varepsilon <a_N\leq x

Thus we have

x-\varepsilon <a_N\leq a_n\leq x,\quad \forall n\geq N

Or

|a_n-x|<\varepsilon ,\quad \forall n\geq N

\blacksquare

Exercise 6.3.4. Explain why Proposition 6.3.10 fails when x>1. In fact, show that the sequence (x^n)_{n=1}^{\infty} diverges when x>1.
Solution: Suppose x>1, assume (x^n)_{n=1}^{\infty} converges to L, then we have 0<1/x<1 and

\lim\limits_{n\to {\infty}}(1/x)^n=0

Use the identity (1/x)^n x^n=1, we let n\to {\infty} and get 0\cdot L=0=1, which is a contradiction.

\blacksquare

陶哲轩实分析6.2及习题-Analysis I 6.2

这一节严格的引入了无穷的概念,并且和上下确界关联起来。

Exercise 6.2.1. Prove Proposition 6.2.5.
Solution:
( a ) if x is a real number then x\leq x shall be true. If x=+\infty , then any y\in \mathbf R^*, y\leq x, and x\leq x. If x=-\infty , then any y\in \mathbf R^*, y\geq x, and x\geq x.

( b ) Trichotomy is true when x,y are real numbers. Now consider the case when x=+\infty or x=-\infty :

  • Case I: x=+\infty , then
    • i. y=-\infty , then y\leq x and y\neq x, thus y<x
    • ii. y is a real number, then y\leq x and y\neq x, thus y<x
    • iii. y=+\infty , then y=x
  • Case II: x=-\infty , then
    • i. y=-\infty , then y=x
    • ii. y is a real number, then x\leq y and y\neq x, thus x<y
    • iii. y=+\infty , then x\leq y and y\neq x, thus x<y
  • We left with two cases when x\in \mathbf R and y is infinity:
    • i. y=-\infty , then y\leq x and y\neq x, thus y<x
    • ii. y=+\infty , then x\leq y and y\neq x, thus x<y

( c ) We inspect cases where at least one of x,y,z is infinity, starting from the left

  • i. x=-\infty , then x\leq z is true whatever z’s value is.
  • ii.x is real number, and y is real and z=+\infty , then x\leq z by definition.y=+\infty , then as y\leq z we must have z=+\infty , thus x\leq z
  • iii. x=+\infty , then y=z=+\infty , thus x\leq z by definition.

( d ) By definition 6.2.3, we have one of the three statements true.

  • i. x,y are real and x\leq y, then we shall have -y\leq -x easily.
  • ii. x=-\infty , then -x=+\infty , thus -y\leq -x by Definition 6.2.3 ( b )
  • iii. y=+\infty , then -y=-\infty , thus -y\leq -x by Definition 6.2.3 ( c )

\blacksquare

Exercise 6.2.2. Prove Theorem 6.2.11.
Solution:
( a ) We shall split the case:

  • i. +\infty \notin E and -\infty \notin E, then the conclusion follows from Definition 5.5.10
  • ii. +\infty \in E and -\infty \notin E, then \sup(E)=+\infty and we certainly have x\leq \sup (E), also since -\infty \in -E, but +\infty \notin -E, we shall have \inf E=-\sup (-E\backslash \{-\infty \}), so\begin{aligned}(\forall x\in E)&\implies (-x\in -E)\implies (-x\in -E\backslash \{-\infty \})\\&\implies (-x\leq \sup (-E\backslash \{-\infty \}) )\\&\implies x\geq -\sup (-E\backslash \{-\infty \})=\inf E\end{aligned}
  • iii. +\infty \notin E and -\infty \in E, then (\forall x\in E)\implies (x=-\infty )\wedge (x\in E\backslash \{-\infty \}), so that
    (x=-\infty )\wedge (\sup E=\sup (E\backslash \{-\infty \})\in R^* )\implies x\leq\sup E\\ (x\in E\backslash \{-\infty \})\implies x\leq \sup (E\backslash \{-\infty \})=\sup E
    Since +\infty \in -E, we have \sup (-E)=+\infty and \inf E=-\infty , so x\geq \inf E.
  • iv. +\infty \in E and -\infty \in E, then we have \sup E=+\infty and \inf E=-\infty , use Definition 6.2.3 we can get \inf E\leq x\leq \sup E for all x\in E.

( b ) we shall split the case:

  • i. E is contained in R, then the definition of \sup E guarantees \sup E\leq M.
  • ii. +\infty \in E, so if M is an upper bound of E we shall have +\infty \leq M, thus
    (M=+\infty )\implies (\sup E=+\infty \leq +\infty =M)
  • iii. +\infty \notin E and -\infty \in E, then \sup E=\sup (E\backslash \{-\infty \}), and we have M is an upper bound for E\backslash \{-\infty \}, since E\backslash \{-\infty \}\in \mathbf R, we know that M\geq \sup (E\backslash \{-\infty \}).

( c ) we shall split the case:

  • i. E is contained in R, then the definition of \inf E guarantees \inf E\geq M.
  • ii. -\infty \in E,+\infty \in -E, so if M is an lower bound of E we shall have M\leq -\infty , thus
    (M=-\infty )\implies (\inf E=-\infty \geq -\infty =M)
  • iii. -\infty \notin E and +\infty \in E, then \sup?(-E)=\sup (-E\backslash \{-\infty \}), and M is an lower bound for E means -M is an upper bound for -E\backslash \{-\infty \}, since -E\backslash \{-\infty \}\in \mathbf R we know that -M\geq \sup (-E\backslash \{-\infty \})=\sup (-E), thus M\leq -\sup (-E)=\inf E.

\blacksquare

陶哲轩实分析6.1及习题-Analysis I 6.1

这一节开始讲实际的极限,建立metric概念(其实是实直线上的标准度量)和极限算律,从这一章起,内容与普通实分析差异不大,但由于有第2-5章的基础,从这章开始的进度是明显加快的,其后只用6章就把单变量微积分的严格构建以及实数型级数介绍完毕,还附带说了一些集合论的东西(第8章),由此可以看出基础打得好的作用,如果前面做题扎实,从第6章开始读完Analysis I的感觉应该是基本上每个概念都很清晰。本章起习题有所增加,且相对常规化,但仍都值得一做。

Exercise 6.1.1. Let (a_n)_{n=0}^{\infty} be a sequence of real numbers, such that a_{n+1}>a_n for each natural number n. Prove that whenever n and m are natural numbers such that m>n, then we have a_m>a_n. (We refer to these sequences as increasing sequences.)
Solution: Given n fixed and we induct on m>n:
For m=n+1, we have a_{n+1}>a_n by condition given.
Suppose m>n and a_m>a_n, then for m+1, we have a_{m+1}>a_m>a_n, thus the induction hypothesis is valid.

\blacksquare

Exercise 6.1.2. Let (a_n)_{n=m}^{\infty} be a sequence of real numbers, and let L be a real number. Show that (a_n)_{n=m}^{\infty} converges to L if and only if, given any \varepsilon >0, one can find an N\geq m such that |a_n-L|\leq\varepsilon for all n\geq N.
Solution:

\begin{aligned} (a_n)_{n=m}^{\infty}\text{ converges to }L&\iff  (a_n )_{n=m}^{\infty}\text{ is eventually } \varepsilon \text{-close to } L \text{ for }\forall \varepsilon >0\\&\iff  \exists N\geq m,\text{ s.t. }(a_n)_{n=N}^{\infty}\text{ is } \varepsilon \text{-close to }L\\&\iff \exists N\geq m, \text{ s.t. } a_n \text{ is } \varepsilon \text{-close to } L,\forall n\geq N\\&\iff  \exists N\geq m,\text{ s.t. }|a_n-L|\leq \varepsilon ,\forall n\geq N \end{aligned}

\blacksquare

Exercise 6.1.3. Let (a_n)_{n=m}^{\infty} be a sequence of real numbers, let c be a real number, and let m'\geq m be an integer. Show that (a_n)_{n=m}^{\infty} converges to c if and only if (a_n)_{n=m'}^{\infty} converges to c.
Solution: Use Exercise 6.1.2 we have

\begin{aligned}(a_n)_{n=m}^{\infty}\text{ converges to }c&\implies \exists N\geq m,\text{ s.t. }|a_n-c|\leq \varepsilon ,\forall n\geq N \\&\implies \exists N'=\max (N,m' )\geq m,\text{ s.t. }|a_n-c|\leq \varepsilon ,\forall n\geq N' \\&\implies \exists N'\geq m',\text{ s.t. }|a_n-c|\leq \varepsilon ,\forall n\geq N \end{aligned}

The other direction is easy since any N\geq m' we’ll have N\geq m.

\blacksquare

Exercise 6.1.4. Let (a_n)_{n=m}^{\infty} be a sequence of real numbers, let c be a real number, and let k\geq 0 be a non-negative integer. Show that (a_n)_{n=m}^{\infty} converges to c if and only if (a_{n+k})_{n=m}^{\infty} converges to c. Solution: (a_n)_{n=m}^{\infty} converges to c means

\exists N\geq m,\text{ s.t. } |a_n-c|\leq \varepsilon ,\forall n\geq N

Thus if n\geq N, then n+k\geq N, thus |a_{n+k}-c|\leq \varepsilon , so (a_{n+k})_{n=m}^{\infty} converges to c. Conversely, if (a_{n+k} )_{n=m}^{\infty} converges to c, then

\exists N\geq m,\text{s.t. }|a_{n+k}-c|\leq \varepsilon ,\forall n\geq N

Let N'=N+k, then if n>N' we have |a_n-c|\leq \varepsilon , so (a_n)_{n=m}^{\infty} converges to c.

\blacksquare

Exercise 6.1.5. Prove Proposition 6.1.12.
Solution: For \forall \varepsilon >0, let L=\lim_{n\to {\infty}}a_n, then \exists N\geq m,s.t.|a_n-L|\leq \varepsilon /2,\forall n\geq N, thus if p,q\geq N,

|a_p-a_q |\leq |a_p-L|+|a_q-L|\leq \varepsilon

This means (a_n)_{n=m}^{\infty} is a Cauchy sequence.

\blacksquare

Exercise 6.1.6. Prove Proposition 6.1.15.
Solution: We assume a_n is not eventually \varepsilon -close to L, then first there’s a N' such that

|a_n-a_m |<\varepsilon /2,\quad \forall n,m\geq N'

Next, we can find a N>N' such that

|a_N-L|\geq \varepsilon

Let n\geq N, use both results we can have

|a_n-L|\geq |a_N-L|-|a_n-a_N |\geq \varepsilon -\varepsilon /2=\varepsilon /2

This means for all n\geq N, either a_n>L+\varepsilon /2 or a_n<L-\varepsilon /2, by Exercise 5.4.8, we shall have L\geq L+\varepsilon /2 or L\leq L-\varepsilon /2, both leads to a contradiction.

\blacksquare

Exercise 6.1.7. Show that Definition 6.1.16 is consistent with Definition 5.1.12.
Solution: We have to show the following result is true:
Let (a_n )_{n=m}^{\infty} be a sequence of rational numbers starting at some integer index m, then (a_n )_{n=m}^{\infty} is bounded in the sense of Definition 6.1.16 iff (a_n )_{n=m}^{\infty} is bounded in the sense of Definition 5.1.12.

We first suppose (a_n)_{n=m}^{\infty} is bounded in the sense of Definition 6.1.16, i.e. \exists M>0, s.t.

|a_n|\leq M,\quad \forall n\geq m

As M is a positive real, we can have a positive integer (thus rational) N such that M\leq N, so we can have

|a_n|\leq N,\quad \forall n\geq m

This shows that (a_n)_{n=m}^{\infty} is bounded in the sense of Definition 5.1.12.
On the other hand, suppose (a_n)_{n=m}^{\infty} is bounded in the sense of Definition 5.1.12. Then we can find a rational M\geq 0 such that

|a_n|\leq M,\quad \forall n\geq m

Since M is also a real number, we get the result directly.

\blacksquare

Exercise 6.1.8. Prove Theorem 6.1.19.
Solution: We let \forall \varepsilon >0: then have

\left(x=\lim_{n\to {\infty}}a_n \right)\implies (\exists N>0,s.t.|a_n-x|<\varepsilon ,\forall n\geq N) \\ \left(y=\lim_{n\to {\infty})}b_n \right)\implies (\exists M>0,s.t.|b_n-y|<\varepsilon ,\forall n\geq M)

Further, convergent sequences are bounded, so we have M_1,M_2>0, and

|a_n |<M_1,\quad |b_n |<M_2

( a ) The result comes from

|a_n+b_n-x-y|\leq |a_n-x|+|b_n-y|\leq 2\varepsilon ,\quad \forall n\geq \max(N,M)

( b ) We have, for all n\geq \max (N,M):

\begin{aligned}|a_n b_n-xy|=|a_n b_n-a_n y+a_n y-xy|&\leq M_1 |b_n-y|+y|a_n-x|\\&\leq (M_1+y)\varepsilon \end{aligned}

( c ) Let b_n=c,\forall n and use (b).

( d ) From (c) we can get

\lim\limits_{n\to {\infty}}{-b_n}=-\lim\limits_{n\to {\infty}} b_n

And then use (b) to get the result.

( e ) Since y\neq 0, we know that there’s N_1 such that

|b_n-y|\leq |y|/2,\quad \forall n\geq N_1

Which means when n\geq N_1

(-\dfrac{|y|}{2}\leq b_n-y\leq \dfrac{|y|}{2})\implies \left(\dfrac{|y|}{2}\leq b_n\leq \dfrac{3|y|}{2}\right)\vee \left(-\dfrac{3|y|}{2}\leq b_n\leq -\dfrac{|y|}{2}\right)

As b_n\neq 0,\forall m\leq n\leq N_1, we show that b_n is bounded away from 0, so there’s c>0 s.t.

|b_n |\geq c>0

Thus

|\dfrac{1}{b_n} -\dfrac{1}{y}|=\dfrac{|y-b_n |}{|b_n y|} \leq \dfrac{\varepsilon }{c|y|} ,\quad \forall n\geq M

( f ) We use the notation of |b_n |\geq c>0 in (e), then

\begin{aligned}|a_n/b_n -x/y|=\dfrac{|a_n y-b_n x|}{|b_n y|} &\leq \dfrac{|a_n y-a_n b_n+a_n b_n-b_n x|}{c|y|} \\&\leq \frac{(M_1+M_2)}{c|y|} \varepsilon ,\quad \forall n\geq \max(N,M)\end{aligned}

( g ) If x=y, then a_n and b_n are equivalent Cauchy sequence, thus when n\geq \max(N,M):

(|a_n-x|<\varepsilon )\wedge (|b_n-x|<\varepsilon )\implies |\max (a_n,b_n)-x|<\varepsilon

Which means

\lim\limits_{n\to {\infty}} \max (a_n,b_n) =x=\max (x,y)=\max (\lim\limits_{n\to {\infty}}a_n,\lim\limits_{n\to {\infty}}b_n)

Now assume x>y, then there’s N_2>0 s.t.

|a_n-x|\leq (x-y)/3,\quad |b_n-y|\leq (x-y)/3,\quad \forall n\geq N_2

Which will lead to

a_n\geq x-\dfrac{x-y}{3}=\dfrac{2x}{3}+\dfrac{y}{3}>\dfrac{x}{3}+\dfrac{2y}{3}=\dfrac{x-y}{3}+y\geq b_n,\quad \forall n\geq N_2

So that \max(a_n,b_n)=a_n,\forall n\geq N_2, using Exercise 6.1.3 we know that

\lim\limits_{n\to {\infty}}\max (a_n,b_n) =\lim\limits_{n\to {\infty}}a_n =x=\max (x,y)

( h ) A similar proof like (g) can be made by the same logic.

\blacksquare

Exercise 6.1.9. Explain why Theorem 6.1.19(f) fails when the limit of the denominator is 0.
Solution: Let a_n=1/n^2 and b_n=1/n, then by Proposition 6.1.11:

\lim\limits_{n\to {\infty}} \dfrac{a_n}{b_n}=\lim\limits_{n\to {\infty}} \dfrac{1}{n}=0

But x=y=0, so the expression \dfrac{\lim_{n\to {\infty}}a_n}{\lim_{n\to {\infty}}b_n} is meaningless.

\blacksquare

Exercise 6.1.10. Show that the concept of equivalent Cauchy sequence, as defined in Definition 5.2.6, does not change if \varepsilon is required to be positive real instead of positive rational. More precisely, if (a_n)_{n=0}^{\infty} and (b_n)_{n=m}^{\infty} are sequences of reals, show that (a_n)_{n=0}^{\infty} and (b_n)_{n=m}^{\infty} are eventually \varepsilon-close for every rational \varepsilon >0 if and only if they are eventually \varepsilon-close for every real \varepsilon >0.
Solution: Eventually \varepsilon -close for every real \varepsilon >0 implies eventually \varepsilon -close for every rational \varepsilon >0.
To prove the converse, suppose (a_n )_{n=0}^{\infty} and (b_n )_{n=0}^{\infty} are eventually \varepsilon -close for every rational \varepsilon >0, then given any real \delta >0, we can have a rational \varepsilon such that 0<\varepsilon <\delta , and an integer N s.t.

|a_n-b_n |<\varepsilon <\delta ,\quad \forall n\geq N

This means (a_n )_{n=0}^{\infty} and (b_n )_{n=0}^{\infty} are eventually \delta -close.

\blacksquare